Whakaoti mō x
x = \frac{3 \sqrt{29} + 15}{2} \approx 15.577747211
x=\frac{15-3\sqrt{29}}{2}\approx -0.577747211
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-15x-9=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\left(-9\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -15 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\left(-9\right)}}{2}
Pūrua -15.
x=\frac{-\left(-15\right)±\sqrt{225+36}}{2}
Whakareatia -4 ki te -9.
x=\frac{-\left(-15\right)±\sqrt{261}}{2}
Tāpiri 225 ki te 36.
x=\frac{-\left(-15\right)±3\sqrt{29}}{2}
Tuhia te pūtakerua o te 261.
x=\frac{15±3\sqrt{29}}{2}
Ko te tauaro o -15 ko 15.
x=\frac{3\sqrt{29}+15}{2}
Nā, me whakaoti te whārite x=\frac{15±3\sqrt{29}}{2} ina he tāpiri te ±. Tāpiri 15 ki te 3\sqrt{29}.
x=\frac{15-3\sqrt{29}}{2}
Nā, me whakaoti te whārite x=\frac{15±3\sqrt{29}}{2} ina he tango te ±. Tango 3\sqrt{29} mai i 15.
x=\frac{3\sqrt{29}+15}{2} x=\frac{15-3\sqrt{29}}{2}
Kua oti te whārite te whakatau.
x^{2}-15x-9=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-15x-9-\left(-9\right)=-\left(-9\right)
Me tāpiri 9 ki ngā taha e rua o te whārite.
x^{2}-15x=-\left(-9\right)
Mā te tango i te -9 i a ia ake anō ka toe ko te 0.
x^{2}-15x=9
Tango -9 mai i 0.
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=9+\left(-\frac{15}{2}\right)^{2}
Whakawehea te -15, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{15}{2}. Nā, tāpiria te pūrua o te -\frac{15}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-15x+\frac{225}{4}=9+\frac{225}{4}
Pūruatia -\frac{15}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-15x+\frac{225}{4}=\frac{261}{4}
Tāpiri 9 ki te \frac{225}{4}.
\left(x-\frac{15}{2}\right)^{2}=\frac{261}{4}
Tauwehea x^{2}-15x+\frac{225}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{\frac{261}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{15}{2}=\frac{3\sqrt{29}}{2} x-\frac{15}{2}=-\frac{3\sqrt{29}}{2}
Whakarūnātia.
x=\frac{3\sqrt{29}+15}{2} x=\frac{15-3\sqrt{29}}{2}
Me tāpiri \frac{15}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}