Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-14 ab=40
Hei whakaoti i te whārite, whakatauwehea te x^{2}-14x+40 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-40 -2,-20 -4,-10 -5,-8
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 40.
-1-40=-41 -2-20=-22 -4-10=-14 -5-8=-13
Tātaihia te tapeke mō ia takirua.
a=-10 b=-4
Ko te otinga te takirua ka hoatu i te tapeke -14.
\left(x-10\right)\left(x-4\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=10 x=4
Hei kimi otinga whārite, me whakaoti te x-10=0 me te x-4=0.
a+b=-14 ab=1\times 40=40
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+40. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-40 -2,-20 -4,-10 -5,-8
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 40.
-1-40=-41 -2-20=-22 -4-10=-14 -5-8=-13
Tātaihia te tapeke mō ia takirua.
a=-10 b=-4
Ko te otinga te takirua ka hoatu i te tapeke -14.
\left(x^{2}-10x\right)+\left(-4x+40\right)
Tuhia anō te x^{2}-14x+40 hei \left(x^{2}-10x\right)+\left(-4x+40\right).
x\left(x-10\right)-4\left(x-10\right)
Tauwehea te x i te tuatahi me te -4 i te rōpū tuarua.
\left(x-10\right)\left(x-4\right)
Whakatauwehea atu te kīanga pātahi x-10 mā te whakamahi i te āhuatanga tātai tohatoha.
x=10 x=4
Hei kimi otinga whārite, me whakaoti te x-10=0 me te x-4=0.
x^{2}-14x+40=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 40}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -14 mō b, me 40 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 40}}{2}
Pūrua -14.
x=\frac{-\left(-14\right)±\sqrt{196-160}}{2}
Whakareatia -4 ki te 40.
x=\frac{-\left(-14\right)±\sqrt{36}}{2}
Tāpiri 196 ki te -160.
x=\frac{-\left(-14\right)±6}{2}
Tuhia te pūtakerua o te 36.
x=\frac{14±6}{2}
Ko te tauaro o -14 ko 14.
x=\frac{20}{2}
Nā, me whakaoti te whārite x=\frac{14±6}{2} ina he tāpiri te ±. Tāpiri 14 ki te 6.
x=10
Whakawehe 20 ki te 2.
x=\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{14±6}{2} ina he tango te ±. Tango 6 mai i 14.
x=4
Whakawehe 8 ki te 2.
x=10 x=4
Kua oti te whārite te whakatau.
x^{2}-14x+40=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-14x+40-40=-40
Me tango 40 mai i ngā taha e rua o te whārite.
x^{2}-14x=-40
Mā te tango i te 40 i a ia ake anō ka toe ko te 0.
x^{2}-14x+\left(-7\right)^{2}=-40+\left(-7\right)^{2}
Whakawehea te -14, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -7. Nā, tāpiria te pūrua o te -7 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-14x+49=-40+49
Pūrua -7.
x^{2}-14x+49=9
Tāpiri -40 ki te 49.
\left(x-7\right)^{2}=9
Tauwehea x^{2}-14x+49. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-7\right)^{2}}=\sqrt{9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-7=3 x-7=-3
Whakarūnātia.
x=10 x=4
Me tāpiri 7 ki ngā taha e rua o te whārite.