Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-14=67
Pahekotia te 5x me -5x, ka 0.
x^{2}-14-67=0
Tangohia te 67 mai i ngā taha e rua.
x^{2}-81=0
Tangohia te 67 i te -14, ka -81.
\left(x-9\right)\left(x+9\right)=0
Whakaarohia te x^{2}-81. Tuhia anō te x^{2}-81 hei x^{2}-9^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=9 x=-9
Hei kimi otinga whārite, me whakaoti te x-9=0 me te x+9=0.
x^{2}-14=67
Pahekotia te 5x me -5x, ka 0.
x^{2}=67+14
Me tāpiri te 14 ki ngā taha e rua.
x^{2}=81
Tāpirihia te 67 ki te 14, ka 81.
x=9 x=-9
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}-14=67
Pahekotia te 5x me -5x, ka 0.
x^{2}-14-67=0
Tangohia te 67 mai i ngā taha e rua.
x^{2}-81=0
Tangohia te 67 i te -14, ka -81.
x=\frac{0±\sqrt{0^{2}-4\left(-81\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -81 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-81\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{324}}{2}
Whakareatia -4 ki te -81.
x=\frac{0±18}{2}
Tuhia te pūtakerua o te 324.
x=9
Nā, me whakaoti te whārite x=\frac{0±18}{2} ina he tāpiri te ±. Whakawehe 18 ki te 2.
x=-9
Nā, me whakaoti te whārite x=\frac{0±18}{2} ina he tango te ±. Whakawehe -18 ki te 2.
x=9 x=-9
Kua oti te whārite te whakatau.