Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-13 ab=42
Hei whakaoti i te whārite, whakatauwehea te x^{2}-13x+42 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-42 -2,-21 -3,-14 -6,-7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 42.
-1-42=-43 -2-21=-23 -3-14=-17 -6-7=-13
Tātaihia te tapeke mō ia takirua.
a=-7 b=-6
Ko te otinga te takirua ka hoatu i te tapeke -13.
\left(x-7\right)\left(x-6\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=7 x=6
Hei kimi otinga whārite, me whakaoti te x-7=0 me te x-6=0.
a+b=-13 ab=1\times 42=42
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+42. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-42 -2,-21 -3,-14 -6,-7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 42.
-1-42=-43 -2-21=-23 -3-14=-17 -6-7=-13
Tātaihia te tapeke mō ia takirua.
a=-7 b=-6
Ko te otinga te takirua ka hoatu i te tapeke -13.
\left(x^{2}-7x\right)+\left(-6x+42\right)
Tuhia anō te x^{2}-13x+42 hei \left(x^{2}-7x\right)+\left(-6x+42\right).
x\left(x-7\right)-6\left(x-7\right)
Tauwehea te x i te tuatahi me te -6 i te rōpū tuarua.
\left(x-7\right)\left(x-6\right)
Whakatauwehea atu te kīanga pātahi x-7 mā te whakamahi i te āhuatanga tātai tohatoha.
x=7 x=6
Hei kimi otinga whārite, me whakaoti te x-7=0 me te x-6=0.
x^{2}-13x+42=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 42}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -13 mō b, me 42 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 42}}{2}
Pūrua -13.
x=\frac{-\left(-13\right)±\sqrt{169-168}}{2}
Whakareatia -4 ki te 42.
x=\frac{-\left(-13\right)±\sqrt{1}}{2}
Tāpiri 169 ki te -168.
x=\frac{-\left(-13\right)±1}{2}
Tuhia te pūtakerua o te 1.
x=\frac{13±1}{2}
Ko te tauaro o -13 ko 13.
x=\frac{14}{2}
Nā, me whakaoti te whārite x=\frac{13±1}{2} ina he tāpiri te ±. Tāpiri 13 ki te 1.
x=7
Whakawehe 14 ki te 2.
x=\frac{12}{2}
Nā, me whakaoti te whārite x=\frac{13±1}{2} ina he tango te ±. Tango 1 mai i 13.
x=6
Whakawehe 12 ki te 2.
x=7 x=6
Kua oti te whārite te whakatau.
x^{2}-13x+42=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-13x+42-42=-42
Me tango 42 mai i ngā taha e rua o te whārite.
x^{2}-13x=-42
Mā te tango i te 42 i a ia ake anō ka toe ko te 0.
x^{2}-13x+\left(-\frac{13}{2}\right)^{2}=-42+\left(-\frac{13}{2}\right)^{2}
Whakawehea te -13, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{13}{2}. Nā, tāpiria te pūrua o te -\frac{13}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-13x+\frac{169}{4}=-42+\frac{169}{4}
Pūruatia -\frac{13}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-13x+\frac{169}{4}=\frac{1}{4}
Tāpiri -42 ki te \frac{169}{4}.
\left(x-\frac{13}{2}\right)^{2}=\frac{1}{4}
Tauwehea x^{2}-13x+\frac{169}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{13}{2}=\frac{1}{2} x-\frac{13}{2}=-\frac{1}{2}
Whakarūnātia.
x=7 x=6
Me tāpiri \frac{13}{2} ki ngā taha e rua o te whārite.