Whakaoti mō x
x = \frac{5 \sqrt{685} + 125}{2} \approx 127.931261642
x=\frac{125-5\sqrt{685}}{2}\approx -2.931261642
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-125x-375=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-125\right)±\sqrt{\left(-125\right)^{2}-4\left(-375\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -125 mō b, me -375 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-125\right)±\sqrt{15625-4\left(-375\right)}}{2}
Pūrua -125.
x=\frac{-\left(-125\right)±\sqrt{15625+1500}}{2}
Whakareatia -4 ki te -375.
x=\frac{-\left(-125\right)±\sqrt{17125}}{2}
Tāpiri 15625 ki te 1500.
x=\frac{-\left(-125\right)±5\sqrt{685}}{2}
Tuhia te pūtakerua o te 17125.
x=\frac{125±5\sqrt{685}}{2}
Ko te tauaro o -125 ko 125.
x=\frac{5\sqrt{685}+125}{2}
Nā, me whakaoti te whārite x=\frac{125±5\sqrt{685}}{2} ina he tāpiri te ±. Tāpiri 125 ki te 5\sqrt{685}.
x=\frac{125-5\sqrt{685}}{2}
Nā, me whakaoti te whārite x=\frac{125±5\sqrt{685}}{2} ina he tango te ±. Tango 5\sqrt{685} mai i 125.
x=\frac{5\sqrt{685}+125}{2} x=\frac{125-5\sqrt{685}}{2}
Kua oti te whārite te whakatau.
x^{2}-125x-375=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-125x-375-\left(-375\right)=-\left(-375\right)
Me tāpiri 375 ki ngā taha e rua o te whārite.
x^{2}-125x=-\left(-375\right)
Mā te tango i te -375 i a ia ake anō ka toe ko te 0.
x^{2}-125x=375
Tango -375 mai i 0.
x^{2}-125x+\left(-\frac{125}{2}\right)^{2}=375+\left(-\frac{125}{2}\right)^{2}
Whakawehea te -125, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{125}{2}. Nā, tāpiria te pūrua o te -\frac{125}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-125x+\frac{15625}{4}=375+\frac{15625}{4}
Pūruatia -\frac{125}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-125x+\frac{15625}{4}=\frac{17125}{4}
Tāpiri 375 ki te \frac{15625}{4}.
\left(x-\frac{125}{2}\right)^{2}=\frac{17125}{4}
Tauwehea x^{2}-125x+\frac{15625}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{125}{2}\right)^{2}}=\sqrt{\frac{17125}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{125}{2}=\frac{5\sqrt{685}}{2} x-\frac{125}{2}=-\frac{5\sqrt{685}}{2}
Whakarūnātia.
x=\frac{5\sqrt{685}+125}{2} x=\frac{125-5\sqrt{685}}{2}
Me tāpiri \frac{125}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}