Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-12 ab=1\left(-45\right)=-45
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx-45. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-45 3,-15 5,-9
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -45.
1-45=-44 3-15=-12 5-9=-4
Tātaihia te tapeke mō ia takirua.
a=-15 b=3
Ko te otinga te takirua ka hoatu i te tapeke -12.
\left(x^{2}-15x\right)+\left(3x-45\right)
Tuhia anō te x^{2}-12x-45 hei \left(x^{2}-15x\right)+\left(3x-45\right).
x\left(x-15\right)+3\left(x-15\right)
Tauwehea te x i te tuatahi me te 3 i te rōpū tuarua.
\left(x-15\right)\left(x+3\right)
Whakatauwehea atu te kīanga pātahi x-15 mā te whakamahi i te āhuatanga tātai tohatoha.
x^{2}-12x-45=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-45\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-45\right)}}{2}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144+180}}{2}
Whakareatia -4 ki te -45.
x=\frac{-\left(-12\right)±\sqrt{324}}{2}
Tāpiri 144 ki te 180.
x=\frac{-\left(-12\right)±18}{2}
Tuhia te pūtakerua o te 324.
x=\frac{12±18}{2}
Ko te tauaro o -12 ko 12.
x=\frac{30}{2}
Nā, me whakaoti te whārite x=\frac{12±18}{2} ina he tāpiri te ±. Tāpiri 12 ki te 18.
x=15
Whakawehe 30 ki te 2.
x=-\frac{6}{2}
Nā, me whakaoti te whārite x=\frac{12±18}{2} ina he tango te ±. Tango 18 mai i 12.
x=-3
Whakawehe -6 ki te 2.
x^{2}-12x-45=\left(x-15\right)\left(x-\left(-3\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 15 mō te x_{1} me te -3 mō te x_{2}.
x^{2}-12x-45=\left(x-15\right)\left(x+3\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.