Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-12 ab=-28
Hei whakaoti i te whārite, whakatauwehea te x^{2}-12x-28 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-28 2,-14 4,-7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -28.
1-28=-27 2-14=-12 4-7=-3
Tātaihia te tapeke mō ia takirua.
a=-14 b=2
Ko te otinga te takirua ka hoatu i te tapeke -12.
\left(x-14\right)\left(x+2\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=14 x=-2
Hei kimi otinga whārite, me whakaoti te x-14=0 me te x+2=0.
a+b=-12 ab=1\left(-28\right)=-28
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-28. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-28 2,-14 4,-7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -28.
1-28=-27 2-14=-12 4-7=-3
Tātaihia te tapeke mō ia takirua.
a=-14 b=2
Ko te otinga te takirua ka hoatu i te tapeke -12.
\left(x^{2}-14x\right)+\left(2x-28\right)
Tuhia anō te x^{2}-12x-28 hei \left(x^{2}-14x\right)+\left(2x-28\right).
x\left(x-14\right)+2\left(x-14\right)
Tauwehea te x i te tuatahi me te 2 i te rōpū tuarua.
\left(x-14\right)\left(x+2\right)
Whakatauwehea atu te kīanga pātahi x-14 mā te whakamahi i te āhuatanga tātai tohatoha.
x=14 x=-2
Hei kimi otinga whārite, me whakaoti te x-14=0 me te x+2=0.
x^{2}-12x-28=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-28\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -12 mō b, me -28 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-28\right)}}{2}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144+112}}{2}
Whakareatia -4 ki te -28.
x=\frac{-\left(-12\right)±\sqrt{256}}{2}
Tāpiri 144 ki te 112.
x=\frac{-\left(-12\right)±16}{2}
Tuhia te pūtakerua o te 256.
x=\frac{12±16}{2}
Ko te tauaro o -12 ko 12.
x=\frac{28}{2}
Nā, me whakaoti te whārite x=\frac{12±16}{2} ina he tāpiri te ±. Tāpiri 12 ki te 16.
x=14
Whakawehe 28 ki te 2.
x=-\frac{4}{2}
Nā, me whakaoti te whārite x=\frac{12±16}{2} ina he tango te ±. Tango 16 mai i 12.
x=-2
Whakawehe -4 ki te 2.
x=14 x=-2
Kua oti te whārite te whakatau.
x^{2}-12x-28=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-12x-28-\left(-28\right)=-\left(-28\right)
Me tāpiri 28 ki ngā taha e rua o te whārite.
x^{2}-12x=-\left(-28\right)
Mā te tango i te -28 i a ia ake anō ka toe ko te 0.
x^{2}-12x=28
Tango -28 mai i 0.
x^{2}-12x+\left(-6\right)^{2}=28+\left(-6\right)^{2}
Whakawehea te -12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -6. Nā, tāpiria te pūrua o te -6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-12x+36=28+36
Pūrua -6.
x^{2}-12x+36=64
Tāpiri 28 ki te 36.
\left(x-6\right)^{2}=64
Tauwehea x^{2}-12x+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{64}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-6=8 x-6=-8
Whakarūnātia.
x=14 x=-2
Me tāpiri 6 ki ngā taha e rua o te whārite.