Whakaoti mō x
x=5
x=7
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-12x+35=0
Me tāpiri te 35 ki ngā taha e rua.
a+b=-12 ab=35
Hei whakaoti i te whārite, whakatauwehea te x^{2}-12x+35 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-35 -5,-7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 35.
-1-35=-36 -5-7=-12
Tātaihia te tapeke mō ia takirua.
a=-7 b=-5
Ko te otinga te takirua ka hoatu i te tapeke -12.
\left(x-7\right)\left(x-5\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=7 x=5
Hei kimi otinga whārite, me whakaoti te x-7=0 me te x-5=0.
x^{2}-12x+35=0
Me tāpiri te 35 ki ngā taha e rua.
a+b=-12 ab=1\times 35=35
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+35. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-35 -5,-7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 35.
-1-35=-36 -5-7=-12
Tātaihia te tapeke mō ia takirua.
a=-7 b=-5
Ko te otinga te takirua ka hoatu i te tapeke -12.
\left(x^{2}-7x\right)+\left(-5x+35\right)
Tuhia anō te x^{2}-12x+35 hei \left(x^{2}-7x\right)+\left(-5x+35\right).
x\left(x-7\right)-5\left(x-7\right)
Tauwehea te x i te tuatahi me te -5 i te rōpū tuarua.
\left(x-7\right)\left(x-5\right)
Whakatauwehea atu te kīanga pātahi x-7 mā te whakamahi i te āhuatanga tātai tohatoha.
x=7 x=5
Hei kimi otinga whārite, me whakaoti te x-7=0 me te x-5=0.
x^{2}-12x=-35
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x^{2}-12x-\left(-35\right)=-35-\left(-35\right)
Me tāpiri 35 ki ngā taha e rua o te whārite.
x^{2}-12x-\left(-35\right)=0
Mā te tango i te -35 i a ia ake anō ka toe ko te 0.
x^{2}-12x+35=0
Tango -35 mai i 0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 35}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -12 mō b, me 35 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 35}}{2}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144-140}}{2}
Whakareatia -4 ki te 35.
x=\frac{-\left(-12\right)±\sqrt{4}}{2}
Tāpiri 144 ki te -140.
x=\frac{-\left(-12\right)±2}{2}
Tuhia te pūtakerua o te 4.
x=\frac{12±2}{2}
Ko te tauaro o -12 ko 12.
x=\frac{14}{2}
Nā, me whakaoti te whārite x=\frac{12±2}{2} ina he tāpiri te ±. Tāpiri 12 ki te 2.
x=7
Whakawehe 14 ki te 2.
x=\frac{10}{2}
Nā, me whakaoti te whārite x=\frac{12±2}{2} ina he tango te ±. Tango 2 mai i 12.
x=5
Whakawehe 10 ki te 2.
x=7 x=5
Kua oti te whārite te whakatau.
x^{2}-12x=-35
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-12x+\left(-6\right)^{2}=-35+\left(-6\right)^{2}
Whakawehea te -12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -6. Nā, tāpiria te pūrua o te -6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-12x+36=-35+36
Pūrua -6.
x^{2}-12x+36=1
Tāpiri -35 ki te 36.
\left(x-6\right)^{2}=1
Tauwehea x^{2}-12x+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-6=1 x-6=-1
Whakarūnātia.
x=7 x=5
Me tāpiri 6 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}