Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-12x+21+6=0
Me tāpiri te 6 ki ngā taha e rua.
x^{2}-12x+27=0
Tāpirihia te 21 ki te 6, ka 27.
a+b=-12 ab=27
Hei whakaoti i te whārite, whakatauwehea te x^{2}-12x+27 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-27 -3,-9
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 27.
-1-27=-28 -3-9=-12
Tātaihia te tapeke mō ia takirua.
a=-9 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -12.
\left(x-9\right)\left(x-3\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=9 x=3
Hei kimi otinga whārite, me whakaoti te x-9=0 me te x-3=0.
x^{2}-12x+21+6=0
Me tāpiri te 6 ki ngā taha e rua.
x^{2}-12x+27=0
Tāpirihia te 21 ki te 6, ka 27.
a+b=-12 ab=1\times 27=27
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+27. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-27 -3,-9
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 27.
-1-27=-28 -3-9=-12
Tātaihia te tapeke mō ia takirua.
a=-9 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -12.
\left(x^{2}-9x\right)+\left(-3x+27\right)
Tuhia anō te x^{2}-12x+27 hei \left(x^{2}-9x\right)+\left(-3x+27\right).
x\left(x-9\right)-3\left(x-9\right)
Tauwehea te x i te tuatahi me te -3 i te rōpū tuarua.
\left(x-9\right)\left(x-3\right)
Whakatauwehea atu te kīanga pātahi x-9 mā te whakamahi i te āhuatanga tātai tohatoha.
x=9 x=3
Hei kimi otinga whārite, me whakaoti te x-9=0 me te x-3=0.
x^{2}-12x+21=-6
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x^{2}-12x+21-\left(-6\right)=-6-\left(-6\right)
Me tāpiri 6 ki ngā taha e rua o te whārite.
x^{2}-12x+21-\left(-6\right)=0
Mā te tango i te -6 i a ia ake anō ka toe ko te 0.
x^{2}-12x+27=0
Tango -6 mai i 21.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 27}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -12 mō b, me 27 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 27}}{2}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144-108}}{2}
Whakareatia -4 ki te 27.
x=\frac{-\left(-12\right)±\sqrt{36}}{2}
Tāpiri 144 ki te -108.
x=\frac{-\left(-12\right)±6}{2}
Tuhia te pūtakerua o te 36.
x=\frac{12±6}{2}
Ko te tauaro o -12 ko 12.
x=\frac{18}{2}
Nā, me whakaoti te whārite x=\frac{12±6}{2} ina he tāpiri te ±. Tāpiri 12 ki te 6.
x=9
Whakawehe 18 ki te 2.
x=\frac{6}{2}
Nā, me whakaoti te whārite x=\frac{12±6}{2} ina he tango te ±. Tango 6 mai i 12.
x=3
Whakawehe 6 ki te 2.
x=9 x=3
Kua oti te whārite te whakatau.
x^{2}-12x+21=-6
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-12x+21-21=-6-21
Me tango 21 mai i ngā taha e rua o te whārite.
x^{2}-12x=-6-21
Mā te tango i te 21 i a ia ake anō ka toe ko te 0.
x^{2}-12x=-27
Tango 21 mai i -6.
x^{2}-12x+\left(-6\right)^{2}=-27+\left(-6\right)^{2}
Whakawehea te -12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -6. Nā, tāpiria te pūrua o te -6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-12x+36=-27+36
Pūrua -6.
x^{2}-12x+36=9
Tāpiri -27 ki te 36.
\left(x-6\right)^{2}=9
Tauwehea x^{2}-12x+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-6=3 x-6=-3
Whakarūnātia.
x=9 x=3
Me tāpiri 6 ki ngā taha e rua o te whārite.