Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-12 ab=1\times 11=11
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx+11. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-11 b=-1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x^{2}-11x\right)+\left(-x+11\right)
Tuhia anō te x^{2}-12x+11 hei \left(x^{2}-11x\right)+\left(-x+11\right).
x\left(x-11\right)-\left(x-11\right)
Tauwehea te x i te tuatahi me te -1 i te rōpū tuarua.
\left(x-11\right)\left(x-1\right)
Whakatauwehea atu te kīanga pātahi x-11 mā te whakamahi i te āhuatanga tātai tohatoha.
x^{2}-12x+11=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 11}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 11}}{2}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144-44}}{2}
Whakareatia -4 ki te 11.
x=\frac{-\left(-12\right)±\sqrt{100}}{2}
Tāpiri 144 ki te -44.
x=\frac{-\left(-12\right)±10}{2}
Tuhia te pūtakerua o te 100.
x=\frac{12±10}{2}
Ko te tauaro o -12 ko 12.
x=\frac{22}{2}
Nā, me whakaoti te whārite x=\frac{12±10}{2} ina he tāpiri te ±. Tāpiri 12 ki te 10.
x=11
Whakawehe 22 ki te 2.
x=\frac{2}{2}
Nā, me whakaoti te whārite x=\frac{12±10}{2} ina he tango te ±. Tango 10 mai i 12.
x=1
Whakawehe 2 ki te 2.
x^{2}-12x+11=\left(x-11\right)\left(x-1\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 11 mō te x_{1} me te 1 mō te x_{2}.