Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}=1+12
Me tāpiri te 12 ki ngā taha e rua.
x^{2}=13
Tāpirihia te 1 ki te 12, ka 13.
x=\sqrt{13} x=-\sqrt{13}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}-12-1=0
Tangohia te 1 mai i ngā taha e rua.
x^{2}-13=0
Tangohia te 1 i te -12, ka -13.
x=\frac{0±\sqrt{0^{2}-4\left(-13\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -13 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-13\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{52}}{2}
Whakareatia -4 ki te -13.
x=\frac{0±2\sqrt{13}}{2}
Tuhia te pūtakerua o te 52.
x=\sqrt{13}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{13}}{2} ina he tāpiri te ±.
x=-\sqrt{13}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{13}}{2} ina he tango te ±.
x=\sqrt{13} x=-\sqrt{13}
Kua oti te whārite te whakatau.