Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}=12
Me tāpiri te 12 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x=2\sqrt{3} x=-2\sqrt{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}-12=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-12\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-12\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{48}}{2}
Whakareatia -4 ki te -12.
x=\frac{0±4\sqrt{3}}{2}
Tuhia te pūtakerua o te 48.
x=2\sqrt{3}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{3}}{2} ina he tāpiri te ±.
x=-2\sqrt{3}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{3}}{2} ina he tango te ±.
x=2\sqrt{3} x=-2\sqrt{3}
Kua oti te whārite te whakatau.