Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-11 ab=1\times 18=18
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx+18. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-18 -2,-9 -3,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 18.
-1-18=-19 -2-9=-11 -3-6=-9
Tātaihia te tapeke mō ia takirua.
a=-9 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -11.
\left(x^{2}-9x\right)+\left(-2x+18\right)
Tuhia anō te x^{2}-11x+18 hei \left(x^{2}-9x\right)+\left(-2x+18\right).
x\left(x-9\right)-2\left(x-9\right)
Tauwehea te x i te tuatahi me te -2 i te rōpū tuarua.
\left(x-9\right)\left(x-2\right)
Whakatauwehea atu te kīanga pātahi x-9 mā te whakamahi i te āhuatanga tātai tohatoha.
x^{2}-11x+18=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 18}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 18}}{2}
Pūrua -11.
x=\frac{-\left(-11\right)±\sqrt{121-72}}{2}
Whakareatia -4 ki te 18.
x=\frac{-\left(-11\right)±\sqrt{49}}{2}
Tāpiri 121 ki te -72.
x=\frac{-\left(-11\right)±7}{2}
Tuhia te pūtakerua o te 49.
x=\frac{11±7}{2}
Ko te tauaro o -11 ko 11.
x=\frac{18}{2}
Nā, me whakaoti te whārite x=\frac{11±7}{2} ina he tāpiri te ±. Tāpiri 11 ki te 7.
x=9
Whakawehe 18 ki te 2.
x=\frac{4}{2}
Nā, me whakaoti te whārite x=\frac{11±7}{2} ina he tango te ±. Tango 7 mai i 11.
x=2
Whakawehe 4 ki te 2.
x^{2}-11x+18=\left(x-9\right)\left(x-2\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 9 mō te x_{1} me te 2 mō te x_{2}.