Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-10x=-39
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x^{2}-10x-\left(-39\right)=-39-\left(-39\right)
Me tāpiri 39 ki ngā taha e rua o te whārite.
x^{2}-10x-\left(-39\right)=0
Mā te tango i te -39 i a ia ake anō ka toe ko te 0.
x^{2}-10x+39=0
Tango -39 mai i 0.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 39}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -10 mō b, me 39 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 39}}{2}
Pūrua -10.
x=\frac{-\left(-10\right)±\sqrt{100-156}}{2}
Whakareatia -4 ki te 39.
x=\frac{-\left(-10\right)±\sqrt{-56}}{2}
Tāpiri 100 ki te -156.
x=\frac{-\left(-10\right)±2\sqrt{14}i}{2}
Tuhia te pūtakerua o te -56.
x=\frac{10±2\sqrt{14}i}{2}
Ko te tauaro o -10 ko 10.
x=\frac{10+2\sqrt{14}i}{2}
Nā, me whakaoti te whārite x=\frac{10±2\sqrt{14}i}{2} ina he tāpiri te ±. Tāpiri 10 ki te 2i\sqrt{14}.
x=5+\sqrt{14}i
Whakawehe 10+2i\sqrt{14} ki te 2.
x=\frac{-2\sqrt{14}i+10}{2}
Nā, me whakaoti te whārite x=\frac{10±2\sqrt{14}i}{2} ina he tango te ±. Tango 2i\sqrt{14} mai i 10.
x=-\sqrt{14}i+5
Whakawehe 10-2i\sqrt{14} ki te 2.
x=5+\sqrt{14}i x=-\sqrt{14}i+5
Kua oti te whārite te whakatau.
x^{2}-10x=-39
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-10x+\left(-5\right)^{2}=-39+\left(-5\right)^{2}
Whakawehea te -10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -5. Nā, tāpiria te pūrua o te -5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-10x+25=-39+25
Pūrua -5.
x^{2}-10x+25=-14
Tāpiri -39 ki te 25.
\left(x-5\right)^{2}=-14
Tauwehea x^{2}-10x+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{-14}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-5=\sqrt{14}i x-5=-\sqrt{14}i
Whakarūnātia.
x=5+\sqrt{14}i x=-\sqrt{14}i+5
Me tāpiri 5 ki ngā taha e rua o te whārite.