Whakaoti mō x
x = \frac{\sqrt{265} + 5}{8} \approx 2.659852575
x=\frac{5-\sqrt{265}}{8}\approx -1.409852575
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-1.25x-3.75=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-1.25\right)±\sqrt{\left(-1.25\right)^{2}-4\left(-3.75\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -1.25 mō b, me -3.75 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1.25\right)±\sqrt{1.5625-4\left(-3.75\right)}}{2}
Pūruatia -1.25 mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\left(-1.25\right)±\sqrt{1.5625+15}}{2}
Whakareatia -4 ki te -3.75.
x=\frac{-\left(-1.25\right)±\sqrt{16.5625}}{2}
Tāpiri 1.5625 ki te 15.
x=\frac{-\left(-1.25\right)±\frac{\sqrt{265}}{4}}{2}
Tuhia te pūtakerua o te 16.5625.
x=\frac{1.25±\frac{\sqrt{265}}{4}}{2}
Ko te tauaro o -1.25 ko 1.25.
x=\frac{\sqrt{265}+5}{2\times 4}
Nā, me whakaoti te whārite x=\frac{1.25±\frac{\sqrt{265}}{4}}{2} ina he tāpiri te ±. Tāpiri 1.25 ki te \frac{\sqrt{265}}{4}.
x=\frac{\sqrt{265}+5}{8}
Whakawehe \frac{5+\sqrt{265}}{4} ki te 2.
x=\frac{5-\sqrt{265}}{2\times 4}
Nā, me whakaoti te whārite x=\frac{1.25±\frac{\sqrt{265}}{4}}{2} ina he tango te ±. Tango \frac{\sqrt{265}}{4} mai i 1.25.
x=\frac{5-\sqrt{265}}{8}
Whakawehe \frac{5-\sqrt{265}}{4} ki te 2.
x=\frac{\sqrt{265}+5}{8} x=\frac{5-\sqrt{265}}{8}
Kua oti te whārite te whakatau.
x^{2}-1.25x-3.75=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-1.25x-3.75-\left(-3.75\right)=-\left(-3.75\right)
Me tāpiri 3.75 ki ngā taha e rua o te whārite.
x^{2}-1.25x=-\left(-3.75\right)
Mā te tango i te -3.75 i a ia ake anō ka toe ko te 0.
x^{2}-1.25x=3.75
Tango -3.75 mai i 0.
x^{2}-1.25x+\left(-0.625\right)^{2}=3.75+\left(-0.625\right)^{2}
Whakawehea te -1.25, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -0.625. Nā, tāpiria te pūrua o te -0.625 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-1.25x+0.390625=3.75+0.390625
Pūruatia -0.625 mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-1.25x+0.390625=4.140625
Tāpiri 3.75 ki te 0.390625 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-0.625\right)^{2}=4.140625
Tauwehea x^{2}-1.25x+0.390625. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-0.625\right)^{2}}=\sqrt{4.140625}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-0.625=\frac{\sqrt{265}}{8} x-0.625=-\frac{\sqrt{265}}{8}
Whakarūnātia.
x=\frac{\sqrt{265}+5}{8} x=\frac{5-\sqrt{265}}{8}
Me tāpiri 0.625 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}