Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-0+20x-2x-16=0
Ko te tau i whakarea ki te kore ka hua ko te kore.
x^{2}-0+18x-16=0
Pahekotia te 20x me -2x, ka 18x.
x^{2}+18x-16=0
Whakaraupapatia anō ngā kīanga tau.
x=\frac{-18±\sqrt{18^{2}-4\left(-16\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 18 mō b, me -16 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\left(-16\right)}}{2}
Pūrua 18.
x=\frac{-18±\sqrt{324+64}}{2}
Whakareatia -4 ki te -16.
x=\frac{-18±\sqrt{388}}{2}
Tāpiri 324 ki te 64.
x=\frac{-18±2\sqrt{97}}{2}
Tuhia te pūtakerua o te 388.
x=\frac{2\sqrt{97}-18}{2}
Nā, me whakaoti te whārite x=\frac{-18±2\sqrt{97}}{2} ina he tāpiri te ±. Tāpiri -18 ki te 2\sqrt{97}.
x=\sqrt{97}-9
Whakawehe -18+2\sqrt{97} ki te 2.
x=\frac{-2\sqrt{97}-18}{2}
Nā, me whakaoti te whārite x=\frac{-18±2\sqrt{97}}{2} ina he tango te ±. Tango 2\sqrt{97} mai i -18.
x=-\sqrt{97}-9
Whakawehe -18-2\sqrt{97} ki te 2.
x=\sqrt{97}-9 x=-\sqrt{97}-9
Kua oti te whārite te whakatau.
x^{2}-0+20x-2x-16=0
Ko te tau i whakarea ki te kore ka hua ko te kore.
x^{2}-0+18x-16=0
Pahekotia te 20x me -2x, ka 18x.
x^{2}-0+18x=16
Me tāpiri te 16 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}+18x=16
Whakaraupapatia anō ngā kīanga tau.
x^{2}+18x+9^{2}=16+9^{2}
Whakawehea te 18, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 9. Nā, tāpiria te pūrua o te 9 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+18x+81=16+81
Pūrua 9.
x^{2}+18x+81=97
Tāpiri 16 ki te 81.
\left(x+9\right)^{2}=97
Tauwehea x^{2}+18x+81. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+9\right)^{2}}=\sqrt{97}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+9=\sqrt{97} x+9=-\sqrt{97}
Whakarūnātia.
x=\sqrt{97}-9 x=-\sqrt{97}-9
Me tango 9 mai i ngā taha e rua o te whārite.
x^{2}-0+20x-2x-16=0
Ko te tau i whakarea ki te kore ka hua ko te kore.
x^{2}-0+18x-16=0
Pahekotia te 20x me -2x, ka 18x.
x^{2}+18x-16=0
Whakaraupapatia anō ngā kīanga tau.
x=\frac{-18±\sqrt{18^{2}-4\left(-16\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 18 mō b, me -16 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\left(-16\right)}}{2}
Pūrua 18.
x=\frac{-18±\sqrt{324+64}}{2}
Whakareatia -4 ki te -16.
x=\frac{-18±\sqrt{388}}{2}
Tāpiri 324 ki te 64.
x=\frac{-18±2\sqrt{97}}{2}
Tuhia te pūtakerua o te 388.
x=\frac{2\sqrt{97}-18}{2}
Nā, me whakaoti te whārite x=\frac{-18±2\sqrt{97}}{2} ina he tāpiri te ±. Tāpiri -18 ki te 2\sqrt{97}.
x=\sqrt{97}-9
Whakawehe -18+2\sqrt{97} ki te 2.
x=\frac{-2\sqrt{97}-18}{2}
Nā, me whakaoti te whārite x=\frac{-18±2\sqrt{97}}{2} ina he tango te ±. Tango 2\sqrt{97} mai i -18.
x=-\sqrt{97}-9
Whakawehe -18-2\sqrt{97} ki te 2.
x=\sqrt{97}-9 x=-\sqrt{97}-9
Kua oti te whārite te whakatau.
x^{2}-0+20x-2x-16=0
Ko te tau i whakarea ki te kore ka hua ko te kore.
x^{2}-0+18x-16=0
Pahekotia te 20x me -2x, ka 18x.
x^{2}-0+18x=16
Me tāpiri te 16 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}+18x=16
Whakaraupapatia anō ngā kīanga tau.
x^{2}+18x+9^{2}=16+9^{2}
Whakawehea te 18, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 9. Nā, tāpiria te pūrua o te 9 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+18x+81=16+81
Pūrua 9.
x^{2}+18x+81=97
Tāpiri 16 ki te 81.
\left(x+9\right)^{2}=97
Tauwehea x^{2}+18x+81. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+9\right)^{2}}=\sqrt{97}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+9=\sqrt{97} x+9=-\sqrt{97}
Whakarūnātia.
x=\sqrt{97}-9 x=-\sqrt{97}-9
Me tango 9 mai i ngā taha e rua o te whārite.