Whakaoti mō x
x=-5
x=6
x=-6
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{3}+6x^{2}-x\left(x+6\right)=30\left(x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2} ki te x+6.
x^{3}+6x^{2}-\left(x^{2}+6x\right)=30\left(x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+6.
x^{3}+6x^{2}-x^{2}-6x=30\left(x+6\right)
Hei kimi i te tauaro o x^{2}+6x, kimihia te tauaro o ia taurangi.
x^{3}+5x^{2}-6x=30\left(x+6\right)
Pahekotia te 6x^{2} me -x^{2}, ka 5x^{2}.
x^{3}+5x^{2}-6x=30x+180
Whakamahia te āhuatanga tohatoha hei whakarea te 30 ki te x+6.
x^{3}+5x^{2}-6x-30x=180
Tangohia te 30x mai i ngā taha e rua.
x^{3}+5x^{2}-36x=180
Pahekotia te -6x me -30x, ka -36x.
x^{3}+5x^{2}-36x-180=0
Tangohia te 180 mai i ngā taha e rua.
±180,±90,±60,±45,±36,±30,±20,±18,±15,±12,±10,±9,±6,±5,±4,±3,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -180, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-5
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}-36=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}+5x^{2}-36x-180 ki te x+5, kia riro ko x^{2}-36. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\left(-36\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 0 mō te b, me te -36 mō te c i te ture pūrua.
x=\frac{0±12}{2}
Mahia ngā tātaitai.
x=-6 x=6
Whakaotia te whārite x^{2}-36=0 ina he tōrunga te ±, ina he tōraro te ±.
x=-5 x=-6 x=6
Rārangitia ngā otinga katoa i kitea.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}