Whakaoti mō x
x=2
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
x=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{3}-3x^{2}=4\left(2x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2} ki te 2x-3.
2x^{3}-3x^{2}=8x-12
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 2x-3.
2x^{3}-3x^{2}-8x=-12
Tangohia te 8x mai i ngā taha e rua.
2x^{3}-3x^{2}-8x+12=0
Me tāpiri te 12 ki ngā taha e rua.
±6,±12,±3,±2,±4,±\frac{3}{2},±1,±\frac{1}{2}
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 12, ā, ka wehea e q te whakarea arahanga 2. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=2
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
2x^{2}+x-6=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 2x^{3}-3x^{2}-8x+12 ki te x-2, kia riro ko 2x^{2}+x-6. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-6\right)}}{2\times 2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 2 mō te a, te 1 mō te b, me te -6 mō te c i te ture pūrua.
x=\frac{-1±7}{4}
Mahia ngā tātaitai.
x=-2 x=\frac{3}{2}
Whakaotia te whārite 2x^{2}+x-6=0 ina he tōrunga te ±, ina he tōraro te ±.
x=2 x=-2 x=\frac{3}{2}
Rārangitia ngā otinga katoa i kitea.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}