Tīpoka ki ngā ihirangi matua
Whakaoti mō d (complex solution)
Tick mark Image
Whakaoti mō d
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-x^{3}+x^{2}y+x-xdy=0
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2} ki te 1-x+y.
-x^{3}+x^{2}y+x-xdy=-x^{2}
Tangohia te x^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}y+x-xdy=-x^{2}+x^{3}
Me tāpiri te x^{3} ki ngā taha e rua.
x-xdy=-x^{2}+x^{3}-x^{2}y
Tangohia te x^{2}y mai i ngā taha e rua.
-xdy=-x^{2}+x^{3}-x^{2}y-x
Tangohia te x mai i ngā taha e rua.
\left(-xy\right)d=x^{3}-x^{2}-x-yx^{2}
He hanga arowhānui tō te whārite.
\frac{\left(-xy\right)d}{-xy}=\frac{x\left(x^{2}-xy-x-1\right)}{-xy}
Whakawehea ngā taha e rua ki te -xy.
d=\frac{x\left(x^{2}-xy-x-1\right)}{-xy}
Mā te whakawehe ki te -xy ka wetekia te whakareanga ki te -xy.
d=\frac{1+x-x^{2}}{y}+x
Whakawehe x\left(-x+x^{2}-xy-1\right) ki te -xy.
x^{2}-x^{3}+x^{2}y+x-xdy=0
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2} ki te 1-x+y.
-x^{3}+x^{2}y+x-xdy=-x^{2}
Tangohia te x^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}y+x-xdy=-x^{2}+x^{3}
Me tāpiri te x^{3} ki ngā taha e rua.
x-xdy=-x^{2}+x^{3}-x^{2}y
Tangohia te x^{2}y mai i ngā taha e rua.
-xdy=-x^{2}+x^{3}-x^{2}y-x
Tangohia te x mai i ngā taha e rua.
\left(-xy\right)d=x^{3}-x^{2}-x-yx^{2}
He hanga arowhānui tō te whārite.
\frac{\left(-xy\right)d}{-xy}=\frac{x\left(x^{2}-xy-x-1\right)}{-xy}
Whakawehea ngā taha e rua ki te -xy.
d=\frac{x\left(x^{2}-xy-x-1\right)}{-xy}
Mā te whakawehe ki te -xy ka wetekia te whakareanga ki te -xy.
d=\frac{1+x-x^{2}}{y}+x
Whakawehe x\left(-x+x^{2}-xy-1\right) ki te -xy.