Whakaoti mō d (complex solution)
\left\{\begin{matrix}d=\frac{x^{2}}{t}\text{, }&t\neq 0\\d\in \mathrm{C}\text{, }&x=0\text{ and }t=0\end{matrix}\right.
Whakaoti mō t (complex solution)
\left\{\begin{matrix}t=\frac{x^{2}}{d}\text{, }&d\neq 0\\t\in \mathrm{C}\text{, }&x=0\text{ and }d=0\end{matrix}\right.
Whakaoti mō d
\left\{\begin{matrix}d=\frac{x^{2}}{t}\text{, }&t\neq 0\\d\in \mathrm{R}\text{, }&x=0\text{ and }t=0\end{matrix}\right.
Whakaoti mō t
\left\{\begin{matrix}t=\frac{x^{2}}{d}\text{, }&d\neq 0\\t\in \mathrm{R}\text{, }&x=0\text{ and }d=0\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}=x^{2}-x^{2}+dt
Whakareatia te x ki te x, ka x^{2}.
x^{2}=dt
Pahekotia te x^{2} me -x^{2}, ka 0.
dt=x^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
td=x^{2}
He hanga arowhānui tō te whārite.
\frac{td}{t}=\frac{x^{2}}{t}
Whakawehea ngā taha e rua ki te t.
d=\frac{x^{2}}{t}
Mā te whakawehe ki te t ka wetekia te whakareanga ki te t.
x^{2}=x^{2}-x^{2}+dt
Whakareatia te x ki te x, ka x^{2}.
x^{2}=dt
Pahekotia te x^{2} me -x^{2}, ka 0.
dt=x^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{dt}{d}=\frac{x^{2}}{d}
Whakawehea ngā taha e rua ki te d.
t=\frac{x^{2}}{d}
Mā te whakawehe ki te d ka wetekia te whakareanga ki te d.
x^{2}=x^{2}-x^{2}+dt
Whakareatia te x ki te x, ka x^{2}.
x^{2}=dt
Pahekotia te x^{2} me -x^{2}, ka 0.
dt=x^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
td=x^{2}
He hanga arowhānui tō te whārite.
\frac{td}{t}=\frac{x^{2}}{t}
Whakawehea ngā taha e rua ki te t.
d=\frac{x^{2}}{t}
Mā te whakawehe ki te t ka wetekia te whakareanga ki te t.
x^{2}=x^{2}-x^{2}+dt
Whakareatia te x ki te x, ka x^{2}.
x^{2}=dt
Pahekotia te x^{2} me -x^{2}, ka 0.
dt=x^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{dt}{d}=\frac{x^{2}}{d}
Whakawehea ngā taha e rua ki te d.
t=\frac{x^{2}}{d}
Mā te whakawehe ki te d ka wetekia te whakareanga ki te d.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}