Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-x=90
Tangohia te x mai i ngā taha e rua.
x^{2}-x-90=0
Tangohia te 90 mai i ngā taha e rua.
a+b=-1 ab=-90
Hei whakaoti i te whārite, whakatauwehea te x^{2}-x-90 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-90 2,-45 3,-30 5,-18 6,-15 9,-10
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -90.
1-90=-89 2-45=-43 3-30=-27 5-18=-13 6-15=-9 9-10=-1
Tātaihia te tapeke mō ia takirua.
a=-10 b=9
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(x-10\right)\left(x+9\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=10 x=-9
Hei kimi otinga whārite, me whakaoti te x-10=0 me te x+9=0.
x^{2}-x=90
Tangohia te x mai i ngā taha e rua.
x^{2}-x-90=0
Tangohia te 90 mai i ngā taha e rua.
a+b=-1 ab=1\left(-90\right)=-90
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-90. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-90 2,-45 3,-30 5,-18 6,-15 9,-10
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -90.
1-90=-89 2-45=-43 3-30=-27 5-18=-13 6-15=-9 9-10=-1
Tātaihia te tapeke mō ia takirua.
a=-10 b=9
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(x^{2}-10x\right)+\left(9x-90\right)
Tuhia anō te x^{2}-x-90 hei \left(x^{2}-10x\right)+\left(9x-90\right).
x\left(x-10\right)+9\left(x-10\right)
Tauwehea te x i te tuatahi me te 9 i te rōpū tuarua.
\left(x-10\right)\left(x+9\right)
Whakatauwehea atu te kīanga pātahi x-10 mā te whakamahi i te āhuatanga tātai tohatoha.
x=10 x=-9
Hei kimi otinga whārite, me whakaoti te x-10=0 me te x+9=0.
x^{2}-x=90
Tangohia te x mai i ngā taha e rua.
x^{2}-x-90=0
Tangohia te 90 mai i ngā taha e rua.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-90\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -1 mō b, me -90 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+360}}{2}
Whakareatia -4 ki te -90.
x=\frac{-\left(-1\right)±\sqrt{361}}{2}
Tāpiri 1 ki te 360.
x=\frac{-\left(-1\right)±19}{2}
Tuhia te pūtakerua o te 361.
x=\frac{1±19}{2}
Ko te tauaro o -1 ko 1.
x=\frac{20}{2}
Nā, me whakaoti te whārite x=\frac{1±19}{2} ina he tāpiri te ±. Tāpiri 1 ki te 19.
x=10
Whakawehe 20 ki te 2.
x=-\frac{18}{2}
Nā, me whakaoti te whārite x=\frac{1±19}{2} ina he tango te ±. Tango 19 mai i 1.
x=-9
Whakawehe -18 ki te 2.
x=10 x=-9
Kua oti te whārite te whakatau.
x^{2}-x=90
Tangohia te x mai i ngā taha e rua.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=90+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-x+\frac{1}{4}=90+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-x+\frac{1}{4}=\frac{361}{4}
Tāpiri 90 ki te \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{361}{4}
Tauwehea x^{2}-x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{361}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{2}=\frac{19}{2} x-\frac{1}{2}=-\frac{19}{2}
Whakarūnātia.
x=10 x=-9
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.