Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-x=3
Tangohia te x mai i ngā taha e rua.
x^{2}-x-3=0
Tangohia te 3 mai i ngā taha e rua.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-3\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -1 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+12}}{2}
Whakareatia -4 ki te -3.
x=\frac{-\left(-1\right)±\sqrt{13}}{2}
Tāpiri 1 ki te 12.
x=\frac{1±\sqrt{13}}{2}
Ko te tauaro o -1 ko 1.
x=\frac{\sqrt{13}+1}{2}
Nā, me whakaoti te whārite x=\frac{1±\sqrt{13}}{2} ina he tāpiri te ±. Tāpiri 1 ki te \sqrt{13}.
x=\frac{1-\sqrt{13}}{2}
Nā, me whakaoti te whārite x=\frac{1±\sqrt{13}}{2} ina he tango te ±. Tango \sqrt{13} mai i 1.
x=\frac{\sqrt{13}+1}{2} x=\frac{1-\sqrt{13}}{2}
Kua oti te whārite te whakatau.
x^{2}-x=3
Tangohia te x mai i ngā taha e rua.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=3+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-x+\frac{1}{4}=3+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-x+\frac{1}{4}=\frac{13}{4}
Tāpiri 3 ki te \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{13}{4}
Tauwehea x^{2}-x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{13}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{2}=\frac{\sqrt{13}}{2} x-\frac{1}{2}=-\frac{\sqrt{13}}{2}
Whakarūnātia.
x=\frac{\sqrt{13}+1}{2} x=\frac{1-\sqrt{13}}{2}
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.