Whakaoti mō a (complex solution)
\left\{\begin{matrix}a=-\frac{-x^{2}+bx+c-b}{\left(x-2\right)\left(x-1\right)}\text{, }&x\neq 1\text{ and }x\neq 2\\a\in \mathrm{C}\text{, }&\left(b=4-c\text{ and }x=2\right)\text{ or }\left(c=1\text{ and }x=1\right)\end{matrix}\right.
Whakaoti mō b (complex solution)
\left\{\begin{matrix}b=-\frac{ax^{2}-x^{2}-3ax+c+2a}{x-1}\text{, }&x\neq 1\\b\in \mathrm{C}\text{, }&c=1\text{ and }x=1\end{matrix}\right.
Whakaoti mō a
\left\{\begin{matrix}a=-\frac{-x^{2}+bx+c-b}{\left(x-2\right)\left(x-1\right)}\text{, }&x\neq 1\text{ and }x\neq 2\\a\in \mathrm{R}\text{, }&\left(b=4-c\text{ and }x=2\right)\text{ or }\left(c=1\text{ and }x=1\right)\end{matrix}\right.
Whakaoti mō b
\left\{\begin{matrix}b=-\frac{ax^{2}-x^{2}-3ax+c+2a}{x-1}\text{, }&x\neq 1\\b\in \mathrm{R}\text{, }&c=1\text{ and }x=1\end{matrix}\right.
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
x ^ { 2 } = a ( x - 1 ) ( x - 2 ) + b ( x - 1 ) + c
Tohaina
Kua tāruatia ki te papatopenga
x^{2}=\left(ax-a\right)\left(x-2\right)+b\left(x-1\right)+c
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te x-1.
x^{2}=ax^{2}-3ax+2a+b\left(x-1\right)+c
Whakamahia te āhuatanga tuaritanga hei whakarea te ax-a ki te x-2 ka whakakotahi i ngā kupu rite.
x^{2}=ax^{2}-3ax+2a+bx-b+c
Whakamahia te āhuatanga tohatoha hei whakarea te b ki te x-1.
ax^{2}-3ax+2a+bx-b+c=x^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
ax^{2}-3ax+2a-b+c=x^{2}-bx
Tangohia te bx mai i ngā taha e rua.
ax^{2}-3ax+2a+c=x^{2}-bx+b
Me tāpiri te b ki ngā taha e rua.
ax^{2}-3ax+2a=x^{2}-bx+b-c
Tangohia te c mai i ngā taha e rua.
\left(x^{2}-3x+2\right)a=x^{2}-bx+b-c
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\frac{\left(x^{2}-3x+2\right)a}{x^{2}-3x+2}=\frac{x^{2}-bx+b-c}{x^{2}-3x+2}
Whakawehea ngā taha e rua ki te x^{2}-3x+2.
a=\frac{x^{2}-bx+b-c}{x^{2}-3x+2}
Mā te whakawehe ki te x^{2}-3x+2 ka wetekia te whakareanga ki te x^{2}-3x+2.
a=\frac{x^{2}-bx+b-c}{\left(x-2\right)\left(x-1\right)}
Whakawehe -bx+b+x^{2}-c ki te x^{2}-3x+2.
x^{2}=\left(ax-a\right)\left(x-2\right)+b\left(x-1\right)+c
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te x-1.
x^{2}=ax^{2}-3ax+2a+b\left(x-1\right)+c
Whakamahia te āhuatanga tuaritanga hei whakarea te ax-a ki te x-2 ka whakakotahi i ngā kupu rite.
x^{2}=ax^{2}-3ax+2a+bx-b+c
Whakamahia te āhuatanga tohatoha hei whakarea te b ki te x-1.
ax^{2}-3ax+2a+bx-b+c=x^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-3ax+2a+bx-b+c=x^{2}-ax^{2}
Tangohia te ax^{2} mai i ngā taha e rua.
2a+bx-b+c=x^{2}-ax^{2}+3ax
Me tāpiri te 3ax ki ngā taha e rua.
bx-b+c=x^{2}-ax^{2}+3ax-2a
Tangohia te 2a mai i ngā taha e rua.
bx-b=x^{2}-ax^{2}+3ax-2a-c
Tangohia te c mai i ngā taha e rua.
bx-b=-ax^{2}+x^{2}+3ax-2a-c
Whakaraupapatia anō ngā kīanga tau.
\left(x-1\right)b=-ax^{2}+x^{2}+3ax-2a-c
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\left(x-1\right)b=-ax^{2}+x^{2}+3ax-c-2a
He hanga arowhānui tō te whārite.
\frac{\left(x-1\right)b}{x-1}=\frac{-ax^{2}+x^{2}+3ax-c-2a}{x-1}
Whakawehea ngā taha e rua ki te x-1.
b=\frac{-ax^{2}+x^{2}+3ax-c-2a}{x-1}
Mā te whakawehe ki te x-1 ka wetekia te whakareanga ki te x-1.
x^{2}=\left(ax-a\right)\left(x-2\right)+b\left(x-1\right)+c
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te x-1.
x^{2}=ax^{2}-3ax+2a+b\left(x-1\right)+c
Whakamahia te āhuatanga tuaritanga hei whakarea te ax-a ki te x-2 ka whakakotahi i ngā kupu rite.
x^{2}=ax^{2}-3ax+2a+bx-b+c
Whakamahia te āhuatanga tohatoha hei whakarea te b ki te x-1.
ax^{2}-3ax+2a+bx-b+c=x^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
ax^{2}-3ax+2a-b+c=x^{2}-bx
Tangohia te bx mai i ngā taha e rua.
ax^{2}-3ax+2a+c=x^{2}-bx+b
Me tāpiri te b ki ngā taha e rua.
ax^{2}-3ax+2a=x^{2}-bx+b-c
Tangohia te c mai i ngā taha e rua.
\left(x^{2}-3x+2\right)a=x^{2}-bx+b-c
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\frac{\left(x^{2}-3x+2\right)a}{x^{2}-3x+2}=\frac{x^{2}-bx+b-c}{x^{2}-3x+2}
Whakawehea ngā taha e rua ki te x^{2}-3x+2.
a=\frac{x^{2}-bx+b-c}{x^{2}-3x+2}
Mā te whakawehe ki te x^{2}-3x+2 ka wetekia te whakareanga ki te x^{2}-3x+2.
a=\frac{x^{2}-bx+b-c}{\left(x-2\right)\left(x-1\right)}
Whakawehe x^{2}-bx+b-c ki te x^{2}-3x+2.
x^{2}=\left(ax-a\right)\left(x-2\right)+b\left(x-1\right)+c
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te x-1.
x^{2}=ax^{2}-3ax+2a+b\left(x-1\right)+c
Whakamahia te āhuatanga tuaritanga hei whakarea te ax-a ki te x-2 ka whakakotahi i ngā kupu rite.
x^{2}=ax^{2}-3ax+2a+bx-b+c
Whakamahia te āhuatanga tohatoha hei whakarea te b ki te x-1.
ax^{2}-3ax+2a+bx-b+c=x^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-3ax+2a+bx-b+c=x^{2}-ax^{2}
Tangohia te ax^{2} mai i ngā taha e rua.
2a+bx-b+c=x^{2}-ax^{2}+3ax
Me tāpiri te 3ax ki ngā taha e rua.
bx-b+c=x^{2}-ax^{2}+3ax-2a
Tangohia te 2a mai i ngā taha e rua.
bx-b=x^{2}-ax^{2}+3ax-2a-c
Tangohia te c mai i ngā taha e rua.
bx-b=-ax^{2}+x^{2}+3ax-2a-c
Whakaraupapatia anō ngā kīanga tau.
\left(x-1\right)b=-ax^{2}+x^{2}+3ax-2a-c
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\left(x-1\right)b=-ax^{2}+x^{2}+3ax-c-2a
He hanga arowhānui tō te whārite.
\frac{\left(x-1\right)b}{x-1}=\frac{-ax^{2}+x^{2}+3ax-c-2a}{x-1}
Whakawehea ngā taha e rua ki te x-1.
b=\frac{-ax^{2}+x^{2}+3ax-c-2a}{x-1}
Mā te whakawehe ki te x-1 ka wetekia te whakareanga ki te x-1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}