Whakaoti mō x
x=3
x=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-9x=-18
Tangohia te 9x mai i ngā taha e rua.
x^{2}-9x+18=0
Me tāpiri te 18 ki ngā taha e rua.
a+b=-9 ab=18
Hei whakaoti i te whārite, whakatauwehea te x^{2}-9x+18 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-18 -2,-9 -3,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 18.
-1-18=-19 -2-9=-11 -3-6=-9
Tātaihia te tapeke mō ia takirua.
a=-6 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -9.
\left(x-6\right)\left(x-3\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=6 x=3
Hei kimi otinga whārite, me whakaoti te x-6=0 me te x-3=0.
x^{2}-9x=-18
Tangohia te 9x mai i ngā taha e rua.
x^{2}-9x+18=0
Me tāpiri te 18 ki ngā taha e rua.
a+b=-9 ab=1\times 18=18
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+18. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-18 -2,-9 -3,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 18.
-1-18=-19 -2-9=-11 -3-6=-9
Tātaihia te tapeke mō ia takirua.
a=-6 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -9.
\left(x^{2}-6x\right)+\left(-3x+18\right)
Tuhia anō te x^{2}-9x+18 hei \left(x^{2}-6x\right)+\left(-3x+18\right).
x\left(x-6\right)-3\left(x-6\right)
Tauwehea te x i te tuatahi me te -3 i te rōpū tuarua.
\left(x-6\right)\left(x-3\right)
Whakatauwehea atu te kīanga pātahi x-6 mā te whakamahi i te āhuatanga tātai tohatoha.
x=6 x=3
Hei kimi otinga whārite, me whakaoti te x-6=0 me te x-3=0.
x^{2}-9x=-18
Tangohia te 9x mai i ngā taha e rua.
x^{2}-9x+18=0
Me tāpiri te 18 ki ngā taha e rua.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 18}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -9 mō b, me 18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 18}}{2}
Pūrua -9.
x=\frac{-\left(-9\right)±\sqrt{81-72}}{2}
Whakareatia -4 ki te 18.
x=\frac{-\left(-9\right)±\sqrt{9}}{2}
Tāpiri 81 ki te -72.
x=\frac{-\left(-9\right)±3}{2}
Tuhia te pūtakerua o te 9.
x=\frac{9±3}{2}
Ko te tauaro o -9 ko 9.
x=\frac{12}{2}
Nā, me whakaoti te whārite x=\frac{9±3}{2} ina he tāpiri te ±. Tāpiri 9 ki te 3.
x=6
Whakawehe 12 ki te 2.
x=\frac{6}{2}
Nā, me whakaoti te whārite x=\frac{9±3}{2} ina he tango te ±. Tango 3 mai i 9.
x=3
Whakawehe 6 ki te 2.
x=6 x=3
Kua oti te whārite te whakatau.
x^{2}-9x=-18
Tangohia te 9x mai i ngā taha e rua.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-18+\left(-\frac{9}{2}\right)^{2}
Whakawehea te -9, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{2}. Nā, tāpiria te pūrua o te -\frac{9}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-9x+\frac{81}{4}=-18+\frac{81}{4}
Pūruatia -\frac{9}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-9x+\frac{81}{4}=\frac{9}{4}
Tāpiri -18 ki te \frac{81}{4}.
\left(x-\frac{9}{2}\right)^{2}=\frac{9}{4}
Tauwehea x^{2}-9x+\frac{81}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{9}{2}=\frac{3}{2} x-\frac{9}{2}=-\frac{3}{2}
Whakarūnātia.
x=6 x=3
Me tāpiri \frac{9}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}