Whakaoti mō x_2
x_{2}=-\frac{-x^{2}-17x-34\sqrt{x}+112.04368456589644616}{\sqrt{x}\left(x+2\sqrt{x}-6.06139320975861448\right)}
x\neq -\frac{\sqrt{441337075609913405}}{125000000}+\frac{100767415121982681}{12500000000000000}\text{ and }x>0
Graph
Tohaina
Kua tāruatia ki te papatopenga
x ^ {2} = 9 + {(17 - x 2 \sqrt{x})} \cdot {({(7 - x - 2 \sqrt{x})} - 6 \cdot 0.15643446504023092)}
Evaluate trigonometric functions in the problem
x^{2}=9+\left(17-x_{2}\sqrt{x}\right)\left(7-x-2\sqrt{x}-0.93860679024138552\right)
Whakareatia te 6 ki te 0.15643446504023092, ka 0.93860679024138552.
x^{2}=9+\left(17-x_{2}\sqrt{x}\right)\left(7-x-2\sqrt{x}\right)-0.93860679024138552\left(17-x_{2}\sqrt{x}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 17-x_{2}\sqrt{x} ki te 7-x-2\sqrt{x}-0.93860679024138552.
9+\left(17-x_{2}\sqrt{x}\right)\left(7-x-2\sqrt{x}\right)-0.93860679024138552\left(17-x_{2}\sqrt{x}\right)=x^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(17-x_{2}\sqrt{x}\right)\left(7-x-2\sqrt{x}\right)-0.93860679024138552\left(17-x_{2}\sqrt{x}\right)=x^{2}-9
Tangohia te 9 mai i ngā taha e rua.
119-17x-34\sqrt{x}-7x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}\left(\sqrt{x}\right)^{2}-0.93860679024138552\left(17-x_{2}\sqrt{x}\right)=x^{2}-9
Whakamahia te āhuatanga tohatoha hei whakarea te 17-x_{2}\sqrt{x} ki te 7-x-2\sqrt{x}.
119-17x-34\sqrt{x}-7x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x-0.93860679024138552\left(17-x_{2}\sqrt{x}\right)=x^{2}-9
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
119-17x-34\sqrt{x}-7x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x-15.95631543410355384+0.93860679024138552x_{2}\sqrt{x}=x^{2}-9
Whakamahia te āhuatanga tohatoha hei whakarea te -0.93860679024138552 ki te 17-x_{2}\sqrt{x}.
103.04368456589644616-17x-34\sqrt{x}-7x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x+0.93860679024138552x_{2}\sqrt{x}=x^{2}-9
Tangohia te 15.95631543410355384 i te 119, ka 103.04368456589644616.
103.04368456589644616-17x-34\sqrt{x}-6.06139320975861448x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x=x^{2}-9
Pahekotia te -7x_{2}\sqrt{x} me 0.93860679024138552x_{2}\sqrt{x}, ka -6.06139320975861448x_{2}\sqrt{x}.
-17x-34\sqrt{x}-6.06139320975861448x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x=x^{2}-9-103.04368456589644616
Tangohia te 103.04368456589644616 mai i ngā taha e rua.
-17x-34\sqrt{x}-6.06139320975861448x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x=x^{2}-112.04368456589644616
Tangohia te 103.04368456589644616 i te -9, ka -112.04368456589644616.
-34\sqrt{x}-6.06139320975861448x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x=x^{2}-112.04368456589644616+17x
Me tāpiri te 17x ki ngā taha e rua.
-6.06139320975861448x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x=x^{2}-112.04368456589644616+17x+34\sqrt{x}
Me tāpiri te 34\sqrt{x} ki ngā taha e rua.
\left(-6.06139320975861448\sqrt{x}+x\sqrt{x}+2x\right)x_{2}=x^{2}-112.04368456589644616+17x+34\sqrt{x}
Pahekotia ngā kīanga tau katoa e whai ana i te x_{2}.
\left(\sqrt{x}x+2x-\frac{75767415121982681\sqrt{x}}{12500000000000000}\right)x_{2}=x^{2}+17x+34\sqrt{x}-112.04368456589644616
He hanga arowhānui tō te whārite.
\frac{\left(\sqrt{x}x+2x-\frac{75767415121982681\sqrt{x}}{12500000000000000}\right)x_{2}}{\sqrt{x}x+2x-\frac{75767415121982681\sqrt{x}}{12500000000000000}}=\frac{x^{2}+17x+34\sqrt{x}-112.04368456589644616}{\sqrt{x}x+2x-\frac{75767415121982681\sqrt{x}}{12500000000000000}}
Whakawehea ngā taha e rua ki te -6.06139320975861448\sqrt{x}+x\sqrt{x}+2x.
x_{2}=\frac{x^{2}+17x+34\sqrt{x}-112.04368456589644616}{\sqrt{x}x+2x-\frac{75767415121982681\sqrt{x}}{12500000000000000}}
Mā te whakawehe ki te -6.06139320975861448\sqrt{x}+x\sqrt{x}+2x ka wetekia te whakareanga ki te -6.06139320975861448\sqrt{x}+x\sqrt{x}+2x.
x_{2}=\frac{x^{2}+17x+34\sqrt{x}-112.04368456589644616}{\sqrt{x}\left(x+2\sqrt{x}-6.06139320975861448\right)}
Whakawehe x^{2}-112.04368456589644616+17x+34\sqrt{x} ki te -6.06139320975861448\sqrt{x}+x\sqrt{x}+2x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}