Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-3x=0
Tangohia te 3x mai i ngā taha e rua.
x\left(x-3\right)=0
Tauwehea te x.
x=0 x=3
Hei kimi otinga whārite, me whakaoti te x=0 me te x-3=0.
x^{2}-3x=0
Tangohia te 3x mai i ngā taha e rua.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -3 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±3}{2}
Tuhia te pūtakerua o te \left(-3\right)^{2}.
x=\frac{3±3}{2}
Ko te tauaro o -3 ko 3.
x=\frac{6}{2}
Nā, me whakaoti te whārite x=\frac{3±3}{2} ina he tāpiri te ±. Tāpiri 3 ki te 3.
x=3
Whakawehe 6 ki te 2.
x=\frac{0}{2}
Nā, me whakaoti te whārite x=\frac{3±3}{2} ina he tango te ±. Tango 3 mai i 3.
x=0
Whakawehe 0 ki te 2.
x=3 x=0
Kua oti te whārite te whakatau.
x^{2}-3x=0
Tangohia te 3x mai i ngā taha e rua.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{3}{2}\right)^{2}=\frac{9}{4}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{3}{2} x-\frac{3}{2}=-\frac{3}{2}
Whakarūnātia.
x=3 x=0
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.