Whakaoti mō x
x=-3
x=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-18=3x
Tangohia te 18 mai i ngā taha e rua.
x^{2}-18-3x=0
Tangohia te 3x mai i ngā taha e rua.
x^{2}-3x-18=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-3 ab=-18
Hei whakaoti i te whārite, whakatauwehea te x^{2}-3x-18 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-18 2,-9 3,-6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -18.
1-18=-17 2-9=-7 3-6=-3
Tātaihia te tapeke mō ia takirua.
a=-6 b=3
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(x-6\right)\left(x+3\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=6 x=-3
Hei kimi otinga whārite, me whakaoti te x-6=0 me te x+3=0.
x^{2}-18=3x
Tangohia te 18 mai i ngā taha e rua.
x^{2}-18-3x=0
Tangohia te 3x mai i ngā taha e rua.
x^{2}-3x-18=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-3 ab=1\left(-18\right)=-18
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-18. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-18 2,-9 3,-6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -18.
1-18=-17 2-9=-7 3-6=-3
Tātaihia te tapeke mō ia takirua.
a=-6 b=3
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(x^{2}-6x\right)+\left(3x-18\right)
Tuhia anō te x^{2}-3x-18 hei \left(x^{2}-6x\right)+\left(3x-18\right).
x\left(x-6\right)+3\left(x-6\right)
Tauwehea te x i te tuatahi me te 3 i te rōpū tuarua.
\left(x-6\right)\left(x+3\right)
Whakatauwehea atu te kīanga pātahi x-6 mā te whakamahi i te āhuatanga tātai tohatoha.
x=6 x=-3
Hei kimi otinga whārite, me whakaoti te x-6=0 me te x+3=0.
x^{2}-18=3x
Tangohia te 18 mai i ngā taha e rua.
x^{2}-18-3x=0
Tangohia te 3x mai i ngā taha e rua.
x^{2}-3x-18=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-18\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -3 mō b, me -18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-18\right)}}{2}
Pūrua -3.
x=\frac{-\left(-3\right)±\sqrt{9+72}}{2}
Whakareatia -4 ki te -18.
x=\frac{-\left(-3\right)±\sqrt{81}}{2}
Tāpiri 9 ki te 72.
x=\frac{-\left(-3\right)±9}{2}
Tuhia te pūtakerua o te 81.
x=\frac{3±9}{2}
Ko te tauaro o -3 ko 3.
x=\frac{12}{2}
Nā, me whakaoti te whārite x=\frac{3±9}{2} ina he tāpiri te ±. Tāpiri 3 ki te 9.
x=6
Whakawehe 12 ki te 2.
x=-\frac{6}{2}
Nā, me whakaoti te whārite x=\frac{3±9}{2} ina he tango te ±. Tango 9 mai i 3.
x=-3
Whakawehe -6 ki te 2.
x=6 x=-3
Kua oti te whārite te whakatau.
x^{2}-3x=18
Tangohia te 3x mai i ngā taha e rua.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=18+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=18+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3x+\frac{9}{4}=\frac{81}{4}
Tāpiri 18 ki te \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{81}{4}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{9}{2} x-\frac{3}{2}=-\frac{9}{2}
Whakarūnātia.
x=6 x=-3
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}