Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-12x=17
Tangohia te 12x mai i ngā taha e rua.
x^{2}-12x-17=0
Tangohia te 17 mai i ngā taha e rua.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-17\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -12 mō b, me -17 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-17\right)}}{2}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144+68}}{2}
Whakareatia -4 ki te -17.
x=\frac{-\left(-12\right)±\sqrt{212}}{2}
Tāpiri 144 ki te 68.
x=\frac{-\left(-12\right)±2\sqrt{53}}{2}
Tuhia te pūtakerua o te 212.
x=\frac{12±2\sqrt{53}}{2}
Ko te tauaro o -12 ko 12.
x=\frac{2\sqrt{53}+12}{2}
Nā, me whakaoti te whārite x=\frac{12±2\sqrt{53}}{2} ina he tāpiri te ±. Tāpiri 12 ki te 2\sqrt{53}.
x=\sqrt{53}+6
Whakawehe 12+2\sqrt{53} ki te 2.
x=\frac{12-2\sqrt{53}}{2}
Nā, me whakaoti te whārite x=\frac{12±2\sqrt{53}}{2} ina he tango te ±. Tango 2\sqrt{53} mai i 12.
x=6-\sqrt{53}
Whakawehe 12-2\sqrt{53} ki te 2.
x=\sqrt{53}+6 x=6-\sqrt{53}
Kua oti te whārite te whakatau.
x^{2}-12x=17
Tangohia te 12x mai i ngā taha e rua.
x^{2}-12x+\left(-6\right)^{2}=17+\left(-6\right)^{2}
Whakawehea te -12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -6. Nā, tāpiria te pūrua o te -6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-12x+36=17+36
Pūrua -6.
x^{2}-12x+36=53
Tāpiri 17 ki te 36.
\left(x-6\right)^{2}=53
Tauwehea x^{2}-12x+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{53}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-6=\sqrt{53} x-6=-\sqrt{53}
Whakarūnātia.
x=\sqrt{53}+6 x=6-\sqrt{53}
Me tāpiri 6 ki ngā taha e rua o te whārite.