Whakaoti mō x
x=-1
x=12
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-11x=12
Tangohia te 11x mai i ngā taha e rua.
x^{2}-11x-12=0
Tangohia te 12 mai i ngā taha e rua.
a+b=-11 ab=-12
Hei whakaoti i te whārite, whakatauwehea te x^{2}-11x-12 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-12 2,-6 3,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
1-12=-11 2-6=-4 3-4=-1
Tātaihia te tapeke mō ia takirua.
a=-12 b=1
Ko te otinga te takirua ka hoatu i te tapeke -11.
\left(x-12\right)\left(x+1\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=12 x=-1
Hei kimi otinga whārite, me whakaoti te x-12=0 me te x+1=0.
x^{2}-11x=12
Tangohia te 11x mai i ngā taha e rua.
x^{2}-11x-12=0
Tangohia te 12 mai i ngā taha e rua.
a+b=-11 ab=1\left(-12\right)=-12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-12 2,-6 3,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
1-12=-11 2-6=-4 3-4=-1
Tātaihia te tapeke mō ia takirua.
a=-12 b=1
Ko te otinga te takirua ka hoatu i te tapeke -11.
\left(x^{2}-12x\right)+\left(x-12\right)
Tuhia anō te x^{2}-11x-12 hei \left(x^{2}-12x\right)+\left(x-12\right).
x\left(x-12\right)+x-12
Whakatauwehea atu x i te x^{2}-12x.
\left(x-12\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi x-12 mā te whakamahi i te āhuatanga tātai tohatoha.
x=12 x=-1
Hei kimi otinga whārite, me whakaoti te x-12=0 me te x+1=0.
x^{2}-11x=12
Tangohia te 11x mai i ngā taha e rua.
x^{2}-11x-12=0
Tangohia te 12 mai i ngā taha e rua.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-12\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -11 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-12\right)}}{2}
Pūrua -11.
x=\frac{-\left(-11\right)±\sqrt{121+48}}{2}
Whakareatia -4 ki te -12.
x=\frac{-\left(-11\right)±\sqrt{169}}{2}
Tāpiri 121 ki te 48.
x=\frac{-\left(-11\right)±13}{2}
Tuhia te pūtakerua o te 169.
x=\frac{11±13}{2}
Ko te tauaro o -11 ko 11.
x=\frac{24}{2}
Nā, me whakaoti te whārite x=\frac{11±13}{2} ina he tāpiri te ±. Tāpiri 11 ki te 13.
x=12
Whakawehe 24 ki te 2.
x=-\frac{2}{2}
Nā, me whakaoti te whārite x=\frac{11±13}{2} ina he tango te ±. Tango 13 mai i 11.
x=-1
Whakawehe -2 ki te 2.
x=12 x=-1
Kua oti te whārite te whakatau.
x^{2}-11x=12
Tangohia te 11x mai i ngā taha e rua.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=12+\left(-\frac{11}{2}\right)^{2}
Whakawehea te -11, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{2}. Nā, tāpiria te pūrua o te -\frac{11}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-11x+\frac{121}{4}=12+\frac{121}{4}
Pūruatia -\frac{11}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-11x+\frac{121}{4}=\frac{169}{4}
Tāpiri 12 ki te \frac{121}{4}.
\left(x-\frac{11}{2}\right)^{2}=\frac{169}{4}
Tauwehea x^{2}-11x+\frac{121}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{11}{2}=\frac{13}{2} x-\frac{11}{2}=-\frac{13}{2}
Whakarūnātia.
x=12 x=-1
Me tāpiri \frac{11}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}