Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-1.21=0
Tangohia te 1.21 mai i ngā taha e rua.
\left(x-\frac{11}{10}\right)\left(x+\frac{11}{10}\right)=0
Whakaarohia te x^{2}-1.21. Tuhia anō te x^{2}-1.21 hei x^{2}-\left(\frac{11}{10}\right)^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{11}{10} x=-\frac{11}{10}
Hei kimi otinga whārite, me whakaoti te x-\frac{11}{10}=0 me te x+\frac{11}{10}=0.
x=\frac{11}{10} x=-\frac{11}{10}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}-1.21=0
Tangohia te 1.21 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\left(-1.21\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -1.21 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1.21\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{4.84}}{2}
Whakareatia -4 ki te -1.21.
x=\frac{0±\frac{11}{5}}{2}
Tuhia te pūtakerua o te 4.84.
x=\frac{11}{10}
Nā, me whakaoti te whārite x=\frac{0±\frac{11}{5}}{2} ina he tāpiri te ±.
x=-\frac{11}{10}
Nā, me whakaoti te whārite x=\frac{0±\frac{11}{5}}{2} ina he tango te ±.
x=\frac{11}{10} x=-\frac{11}{10}
Kua oti te whārite te whakatau.