Whakaoti mō x
x=\frac{\sqrt{6}}{2}+1\approx 2.224744871
x=-\frac{\sqrt{6}}{2}+1\approx -0.224744871
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+x^{2}=4x+1
Me tāpiri te x^{2} ki ngā taha e rua.
2x^{2}=4x+1
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}-4x=1
Tangohia te 4x mai i ngā taha e rua.
2x^{2}-4x-1=0
Tangohia te 1 mai i ngā taha e rua.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-1\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -4 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-1\right)}}{2\times 2}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-1\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-4\right)±\sqrt{16+8}}{2\times 2}
Whakareatia -8 ki te -1.
x=\frac{-\left(-4\right)±\sqrt{24}}{2\times 2}
Tāpiri 16 ki te 8.
x=\frac{-\left(-4\right)±2\sqrt{6}}{2\times 2}
Tuhia te pūtakerua o te 24.
x=\frac{4±2\sqrt{6}}{2\times 2}
Ko te tauaro o -4 ko 4.
x=\frac{4±2\sqrt{6}}{4}
Whakareatia 2 ki te 2.
x=\frac{2\sqrt{6}+4}{4}
Nā, me whakaoti te whārite x=\frac{4±2\sqrt{6}}{4} ina he tāpiri te ±. Tāpiri 4 ki te 2\sqrt{6}.
x=\frac{\sqrt{6}}{2}+1
Whakawehe 4+2\sqrt{6} ki te 4.
x=\frac{4-2\sqrt{6}}{4}
Nā, me whakaoti te whārite x=\frac{4±2\sqrt{6}}{4} ina he tango te ±. Tango 2\sqrt{6} mai i 4.
x=-\frac{\sqrt{6}}{2}+1
Whakawehe 4-2\sqrt{6} ki te 4.
x=\frac{\sqrt{6}}{2}+1 x=-\frac{\sqrt{6}}{2}+1
Kua oti te whārite te whakatau.
x^{2}+x^{2}=4x+1
Me tāpiri te x^{2} ki ngā taha e rua.
2x^{2}=4x+1
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}-4x=1
Tangohia te 4x mai i ngā taha e rua.
\frac{2x^{2}-4x}{2}=\frac{1}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{4}{2}\right)x=\frac{1}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-2x=\frac{1}{2}
Whakawehe -4 ki te 2.
x^{2}-2x+1=\frac{1}{2}+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=\frac{3}{2}
Tāpiri \frac{1}{2} ki te 1.
\left(x-1\right)^{2}=\frac{3}{2}
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{3}{2}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=\frac{\sqrt{6}}{2} x-1=-\frac{\sqrt{6}}{2}
Whakarūnātia.
x=\frac{\sqrt{6}}{2}+1 x=-\frac{\sqrt{6}}{2}+1
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}