Whakaoti mō x
x=-7
x=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+8x=-7
Me tāpiri te 8x ki ngā taha e rua.
x^{2}+8x+7=0
Me tāpiri te 7 ki ngā taha e rua.
a+b=8 ab=7
Hei whakaoti i te whārite, whakatauwehea te x^{2}+8x+7 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x+1\right)\left(x+7\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=-1 x=-7
Hei kimi otinga whārite, me whakaoti te x+1=0 me te x+7=0.
x^{2}+8x=-7
Me tāpiri te 8x ki ngā taha e rua.
x^{2}+8x+7=0
Me tāpiri te 7 ki ngā taha e rua.
a+b=8 ab=1\times 7=7
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+7. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x^{2}+x\right)+\left(7x+7\right)
Tuhia anō te x^{2}+8x+7 hei \left(x^{2}+x\right)+\left(7x+7\right).
x\left(x+1\right)+7\left(x+1\right)
Tauwehea te x i te tuatahi me te 7 i te rōpū tuarua.
\left(x+1\right)\left(x+7\right)
Whakatauwehea atu te kīanga pātahi x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-1 x=-7
Hei kimi otinga whārite, me whakaoti te x+1=0 me te x+7=0.
x^{2}+8x=-7
Me tāpiri te 8x ki ngā taha e rua.
x^{2}+8x+7=0
Me tāpiri te 7 ki ngā taha e rua.
x=\frac{-8±\sqrt{8^{2}-4\times 7}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 8 mō b, me 7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 7}}{2}
Pūrua 8.
x=\frac{-8±\sqrt{64-28}}{2}
Whakareatia -4 ki te 7.
x=\frac{-8±\sqrt{36}}{2}
Tāpiri 64 ki te -28.
x=\frac{-8±6}{2}
Tuhia te pūtakerua o te 36.
x=-\frac{2}{2}
Nā, me whakaoti te whārite x=\frac{-8±6}{2} ina he tāpiri te ±. Tāpiri -8 ki te 6.
x=-1
Whakawehe -2 ki te 2.
x=-\frac{14}{2}
Nā, me whakaoti te whārite x=\frac{-8±6}{2} ina he tango te ±. Tango 6 mai i -8.
x=-7
Whakawehe -14 ki te 2.
x=-1 x=-7
Kua oti te whārite te whakatau.
x^{2}+8x=-7
Me tāpiri te 8x ki ngā taha e rua.
x^{2}+8x+4^{2}=-7+4^{2}
Whakawehea te 8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 4. Nā, tāpiria te pūrua o te 4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+8x+16=-7+16
Pūrua 4.
x^{2}+8x+16=9
Tāpiri -7 ki te 16.
\left(x+4\right)^{2}=9
Tauwehea x^{2}+8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+4=3 x+4=-3
Whakarūnātia.
x=-1 x=-7
Me tango 4 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}