Whakaoti mō x
x=3\sqrt{2}\approx 4.242640687
x=-3\sqrt{2}\approx -4.242640687
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}=4+4\sqrt{5}+\left(\sqrt{5}\right)^{2}+\left(2-\sqrt{5}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2+\sqrt{5}\right)^{2}.
x^{2}=4+4\sqrt{5}+5+\left(2-\sqrt{5}\right)^{2}
Ko te pūrua o \sqrt{5} ko 5.
x^{2}=9+4\sqrt{5}+\left(2-\sqrt{5}\right)^{2}
Tāpirihia te 4 ki te 5, ka 9.
x^{2}=9+4\sqrt{5}+4-4\sqrt{5}+\left(\sqrt{5}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2-\sqrt{5}\right)^{2}.
x^{2}=9+4\sqrt{5}+4-4\sqrt{5}+5
Ko te pūrua o \sqrt{5} ko 5.
x^{2}=9+4\sqrt{5}+9-4\sqrt{5}
Tāpirihia te 4 ki te 5, ka 9.
x^{2}=18+4\sqrt{5}-4\sqrt{5}
Tāpirihia te 9 ki te 9, ka 18.
x^{2}=18
Pahekotia te 4\sqrt{5} me -4\sqrt{5}, ka 0.
x=3\sqrt{2} x=-3\sqrt{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}=4+4\sqrt{5}+\left(\sqrt{5}\right)^{2}+\left(2-\sqrt{5}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2+\sqrt{5}\right)^{2}.
x^{2}=4+4\sqrt{5}+5+\left(2-\sqrt{5}\right)^{2}
Ko te pūrua o \sqrt{5} ko 5.
x^{2}=9+4\sqrt{5}+\left(2-\sqrt{5}\right)^{2}
Tāpirihia te 4 ki te 5, ka 9.
x^{2}=9+4\sqrt{5}+4-4\sqrt{5}+\left(\sqrt{5}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2-\sqrt{5}\right)^{2}.
x^{2}=9+4\sqrt{5}+4-4\sqrt{5}+5
Ko te pūrua o \sqrt{5} ko 5.
x^{2}=9+4\sqrt{5}+9-4\sqrt{5}
Tāpirihia te 4 ki te 5, ka 9.
x^{2}=18+4\sqrt{5}-4\sqrt{5}
Tāpirihia te 9 ki te 9, ka 18.
x^{2}=18
Pahekotia te 4\sqrt{5} me -4\sqrt{5}, ka 0.
x^{2}-18=0
Tangohia te 18 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\left(-18\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-18\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{72}}{2}
Whakareatia -4 ki te -18.
x=\frac{0±6\sqrt{2}}{2}
Tuhia te pūtakerua o te 72.
x=3\sqrt{2}
Nā, me whakaoti te whārite x=\frac{0±6\sqrt{2}}{2} ina he tāpiri te ±.
x=-3\sqrt{2}
Nā, me whakaoti te whārite x=\frac{0±6\sqrt{2}}{2} ina he tango te ±.
x=3\sqrt{2} x=-3\sqrt{2}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}