Whakaoti mō x (complex solution)
x=-\sqrt{2}\approx -1.414213562
x=\sqrt{2}\approx 1.414213562\text{, }y\neq 0
Whakaoti mō y (complex solution)
y\neq 0
\left(x=-\sqrt{2}\text{ or }x=\sqrt{2}\right)\text{ and }y\neq 0
Whakaoti mō y
y\neq 0
|x|=\sqrt{2}\text{ and }y\neq 0
Whakaoti mō x
x=\sqrt{2}
x=-\sqrt{2}\text{, }y\neq 0
Tohaina
Kua tāruatia ki te papatopenga
x=\sqrt{2} x=-\sqrt{2}
Kua oti te whārite te whakatau.
x^{2}=2
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x^{2}-2=2-2
Me tango 2 mai i ngā taha e rua o te whārite.
x^{2}-2=0
Mā te tango i te 2 i a ia ake anō ka toe ko te 0.
x=\frac{0±\sqrt{0^{2}-4\left(-2\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-2\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{8}}{2}
Whakareatia -4 ki te -2.
x=\frac{0±2\sqrt{2}}{2}
Tuhia te pūtakerua o te 8.
x=\sqrt{2}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{2}}{2} ina he tāpiri te ±.
x=-\sqrt{2}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{2}}{2} ina he tango te ±.
x=\sqrt{2} x=-\sqrt{2}
Kua oti te whārite te whakatau.
yx^{2}=2y
Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te y.
yx^{2}-2y=0
Tangohia te 2y mai i ngā taha e rua.
\left(x^{2}-2\right)y=0
Pahekotia ngā kīanga tau katoa e whai ana i te y.
y=0
Whakawehe 0 ki te x^{2}-2.
y\in \emptyset
Tē taea kia ōrite te tāupe y ki 0.
yx^{2}=2y
Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te y.
yx^{2}-2y=0
Tangohia te 2y mai i ngā taha e rua.
\left(x^{2}-2\right)y=0
Pahekotia ngā kīanga tau katoa e whai ana i te y.
y=0
Whakawehe 0 ki te x^{2}-2.
y\in \emptyset
Tē taea kia ōrite te tāupe y ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}