Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō y (complex solution)
Tick mark Image
Whakaoti mō y
Tick mark Image
Whakaoti mō x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x=\sqrt{2} x=-\sqrt{2}
Kua oti te whārite te whakatau.
x^{2}=2
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x^{2}-2=2-2
Me tango 2 mai i ngā taha e rua o te whārite.
x^{2}-2=0
Mā te tango i te 2 i a ia ake anō ka toe ko te 0.
x=\frac{0±\sqrt{0^{2}-4\left(-2\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-2\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{8}}{2}
Whakareatia -4 ki te -2.
x=\frac{0±2\sqrt{2}}{2}
Tuhia te pūtakerua o te 8.
x=\sqrt{2}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{2}}{2} ina he tāpiri te ±.
x=-\sqrt{2}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{2}}{2} ina he tango te ±.
x=\sqrt{2} x=-\sqrt{2}
Kua oti te whārite te whakatau.
yx^{2}=2y
Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te y.
yx^{2}-2y=0
Tangohia te 2y mai i ngā taha e rua.
\left(x^{2}-2\right)y=0
Pahekotia ngā kīanga tau katoa e whai ana i te y.
y=0
Whakawehe 0 ki te x^{2}-2.
y\in \emptyset
Tē taea kia ōrite te tāupe y ki 0.
yx^{2}=2y
Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te y.
yx^{2}-2y=0
Tangohia te 2y mai i ngā taha e rua.
\left(x^{2}-2\right)y=0
Pahekotia ngā kīanga tau katoa e whai ana i te y.
y=0
Whakawehe 0 ki te x^{2}-2.
y\in \emptyset
Tē taea kia ōrite te tāupe y ki 0.