Whakaoti mō x
x=3
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+x^{2}-6x=0
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-6.
2x^{2}-6x=0
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
x\left(2x-6\right)=0
Tauwehea te x.
x=0 x=3
Hei kimi otinga whārite, me whakaoti te x=0 me te 2x-6=0.
x^{2}+x^{2}-6x=0
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-6.
2x^{2}-6x=0
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -6 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±6}{2\times 2}
Tuhia te pūtakerua o te \left(-6\right)^{2}.
x=\frac{6±6}{2\times 2}
Ko te tauaro o -6 ko 6.
x=\frac{6±6}{4}
Whakareatia 2 ki te 2.
x=\frac{12}{4}
Nā, me whakaoti te whārite x=\frac{6±6}{4} ina he tāpiri te ±. Tāpiri 6 ki te 6.
x=3
Whakawehe 12 ki te 4.
x=\frac{0}{4}
Nā, me whakaoti te whārite x=\frac{6±6}{4} ina he tango te ±. Tango 6 mai i 6.
x=0
Whakawehe 0 ki te 4.
x=3 x=0
Kua oti te whārite te whakatau.
x^{2}+x^{2}-6x=0
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-6.
2x^{2}-6x=0
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
\frac{2x^{2}-6x}{2}=\frac{0}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{6}{2}\right)x=\frac{0}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-3x=\frac{0}{2}
Whakawehe -6 ki te 2.
x^{2}-3x=0
Whakawehe 0 ki te 2.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{3}{2}\right)^{2}=\frac{9}{4}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{3}{2} x-\frac{3}{2}=-\frac{3}{2}
Whakarūnātia.
x=3 x=0
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}