Whakaoti mō x
x=\frac{3y^{2}}{1-4y}
y\neq \frac{1}{4}
Whakaoti mō y (complex solution)
y=\frac{-\sqrt{x\left(4x+3\right)}-2x}{3}
y=\frac{\sqrt{x\left(4x+3\right)}-2x}{3}
Whakaoti mō y
y=\frac{-\sqrt{x\left(4x+3\right)}-2x}{3}
y=\frac{\sqrt{x\left(4x+3\right)}-2x}{3}\text{, }x\leq -\frac{3}{4}\text{ or }x\geq 0
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+x+y^{2}=x^{2}+4xy+4y^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2y\right)^{2}.
x^{2}+x+y^{2}-x^{2}=4xy+4y^{2}
Tangohia te x^{2} mai i ngā taha e rua.
x+y^{2}=4xy+4y^{2}
Pahekotia te x^{2} me -x^{2}, ka 0.
x+y^{2}-4xy=4y^{2}
Tangohia te 4xy mai i ngā taha e rua.
x-4xy=4y^{2}-y^{2}
Tangohia te y^{2} mai i ngā taha e rua.
x-4xy=3y^{2}
Pahekotia te 4y^{2} me -y^{2}, ka 3y^{2}.
\left(1-4y\right)x=3y^{2}
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(1-4y\right)x}{1-4y}=\frac{3y^{2}}{1-4y}
Whakawehea ngā taha e rua ki te -4y+1.
x=\frac{3y^{2}}{1-4y}
Mā te whakawehe ki te -4y+1 ka wetekia te whakareanga ki te -4y+1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}