Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

factor(x^{2}+13x-5)
Pahekotia te x me 12x, ka 13x.
x^{2}+13x-5=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-13±\sqrt{13^{2}-4\left(-5\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-13±\sqrt{169-4\left(-5\right)}}{2}
Pūrua 13.
x=\frac{-13±\sqrt{169+20}}{2}
Whakareatia -4 ki te -5.
x=\frac{-13±\sqrt{189}}{2}
Tāpiri 169 ki te 20.
x=\frac{-13±3\sqrt{21}}{2}
Tuhia te pūtakerua o te 189.
x=\frac{3\sqrt{21}-13}{2}
Nā, me whakaoti te whārite x=\frac{-13±3\sqrt{21}}{2} ina he tāpiri te ±. Tāpiri -13 ki te 3\sqrt{21}.
x=\frac{-3\sqrt{21}-13}{2}
Nā, me whakaoti te whārite x=\frac{-13±3\sqrt{21}}{2} ina he tango te ±. Tango 3\sqrt{21} mai i -13.
x^{2}+13x-5=\left(x-\frac{3\sqrt{21}-13}{2}\right)\left(x-\frac{-3\sqrt{21}-13}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-13+3\sqrt{21}}{2} mō te x_{1} me te \frac{-13-3\sqrt{21}}{2} mō te x_{2}.
x^{2}+13x-5
Pahekotia te x me 12x, ka 13x.