Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+9x-2+16=0
Me tāpiri te 16 ki ngā taha e rua.
x^{2}+9x+14=0
Tāpirihia te -2 ki te 16, ka 14.
a+b=9 ab=14
Hei whakaoti i te whārite, whakatauwehea te x^{2}+9x+14 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,14 2,7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 14.
1+14=15 2+7=9
Tātaihia te tapeke mō ia takirua.
a=2 b=7
Ko te otinga te takirua ka hoatu i te tapeke 9.
\left(x+2\right)\left(x+7\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=-2 x=-7
Hei kimi otinga whārite, me whakaoti te x+2=0 me te x+7=0.
x^{2}+9x-2+16=0
Me tāpiri te 16 ki ngā taha e rua.
x^{2}+9x+14=0
Tāpirihia te -2 ki te 16, ka 14.
a+b=9 ab=1\times 14=14
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+14. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,14 2,7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 14.
1+14=15 2+7=9
Tātaihia te tapeke mō ia takirua.
a=2 b=7
Ko te otinga te takirua ka hoatu i te tapeke 9.
\left(x^{2}+2x\right)+\left(7x+14\right)
Tuhia anō te x^{2}+9x+14 hei \left(x^{2}+2x\right)+\left(7x+14\right).
x\left(x+2\right)+7\left(x+2\right)
Tauwehea te x i te tuatahi me te 7 i te rōpū tuarua.
\left(x+2\right)\left(x+7\right)
Whakatauwehea atu te kīanga pātahi x+2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-2 x=-7
Hei kimi otinga whārite, me whakaoti te x+2=0 me te x+7=0.
x^{2}+9x-2=-16
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x^{2}+9x-2-\left(-16\right)=-16-\left(-16\right)
Me tāpiri 16 ki ngā taha e rua o te whārite.
x^{2}+9x-2-\left(-16\right)=0
Mā te tango i te -16 i a ia ake anō ka toe ko te 0.
x^{2}+9x+14=0
Tango -16 mai i -2.
x=\frac{-9±\sqrt{9^{2}-4\times 14}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 9 mō b, me 14 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\times 14}}{2}
Pūrua 9.
x=\frac{-9±\sqrt{81-56}}{2}
Whakareatia -4 ki te 14.
x=\frac{-9±\sqrt{25}}{2}
Tāpiri 81 ki te -56.
x=\frac{-9±5}{2}
Tuhia te pūtakerua o te 25.
x=-\frac{4}{2}
Nā, me whakaoti te whārite x=\frac{-9±5}{2} ina he tāpiri te ±. Tāpiri -9 ki te 5.
x=-2
Whakawehe -4 ki te 2.
x=-\frac{14}{2}
Nā, me whakaoti te whārite x=\frac{-9±5}{2} ina he tango te ±. Tango 5 mai i -9.
x=-7
Whakawehe -14 ki te 2.
x=-2 x=-7
Kua oti te whārite te whakatau.
x^{2}+9x-2=-16
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+9x-2-\left(-2\right)=-16-\left(-2\right)
Me tāpiri 2 ki ngā taha e rua o te whārite.
x^{2}+9x=-16-\left(-2\right)
Mā te tango i te -2 i a ia ake anō ka toe ko te 0.
x^{2}+9x=-14
Tango -2 mai i -16.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=-14+\left(\frac{9}{2}\right)^{2}
Whakawehea te 9, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{9}{2}. Nā, tāpiria te pūrua o te \frac{9}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+9x+\frac{81}{4}=-14+\frac{81}{4}
Pūruatia \frac{9}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+9x+\frac{81}{4}=\frac{25}{4}
Tāpiri -14 ki te \frac{81}{4}.
\left(x+\frac{9}{2}\right)^{2}=\frac{25}{4}
Tauwehea x^{2}+9x+\frac{81}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{9}{2}=\frac{5}{2} x+\frac{9}{2}=-\frac{5}{2}
Whakarūnātia.
x=-2 x=-7
Me tango \frac{9}{2} mai i ngā taha e rua o te whārite.