Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+8x=-10
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x^{2}+8x-\left(-10\right)=-10-\left(-10\right)
Me tāpiri 10 ki ngā taha e rua o te whārite.
x^{2}+8x-\left(-10\right)=0
Mā te tango i te -10 i a ia ake anō ka toe ko te 0.
x^{2}+8x+10=0
Tango -10 mai i 0.
x=\frac{-8±\sqrt{8^{2}-4\times 10}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 8 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 10}}{2}
Pūrua 8.
x=\frac{-8±\sqrt{64-40}}{2}
Whakareatia -4 ki te 10.
x=\frac{-8±\sqrt{24}}{2}
Tāpiri 64 ki te -40.
x=\frac{-8±2\sqrt{6}}{2}
Tuhia te pūtakerua o te 24.
x=\frac{2\sqrt{6}-8}{2}
Nā, me whakaoti te whārite x=\frac{-8±2\sqrt{6}}{2} ina he tāpiri te ±. Tāpiri -8 ki te 2\sqrt{6}.
x=\sqrt{6}-4
Whakawehe -8+2\sqrt{6} ki te 2.
x=\frac{-2\sqrt{6}-8}{2}
Nā, me whakaoti te whārite x=\frac{-8±2\sqrt{6}}{2} ina he tango te ±. Tango 2\sqrt{6} mai i -8.
x=-\sqrt{6}-4
Whakawehe -8-2\sqrt{6} ki te 2.
x=\sqrt{6}-4 x=-\sqrt{6}-4
Kua oti te whārite te whakatau.
x^{2}+8x=-10
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+8x+4^{2}=-10+4^{2}
Whakawehea te 8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 4. Nā, tāpiria te pūrua o te 4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+8x+16=-10+16
Pūrua 4.
x^{2}+8x+16=6
Tāpiri -10 ki te 16.
\left(x+4\right)^{2}=6
Tauwehea x^{2}+8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{6}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+4=\sqrt{6} x+4=-\sqrt{6}
Whakarūnātia.
x=\sqrt{6}-4 x=-\sqrt{6}-4
Me tango 4 mai i ngā taha e rua o te whārite.
x^{2}+8x=-10
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x^{2}+8x-\left(-10\right)=-10-\left(-10\right)
Me tāpiri 10 ki ngā taha e rua o te whārite.
x^{2}+8x-\left(-10\right)=0
Mā te tango i te -10 i a ia ake anō ka toe ko te 0.
x^{2}+8x+10=0
Tango -10 mai i 0.
x=\frac{-8±\sqrt{8^{2}-4\times 10}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 8 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 10}}{2}
Pūrua 8.
x=\frac{-8±\sqrt{64-40}}{2}
Whakareatia -4 ki te 10.
x=\frac{-8±\sqrt{24}}{2}
Tāpiri 64 ki te -40.
x=\frac{-8±2\sqrt{6}}{2}
Tuhia te pūtakerua o te 24.
x=\frac{2\sqrt{6}-8}{2}
Nā, me whakaoti te whārite x=\frac{-8±2\sqrt{6}}{2} ina he tāpiri te ±. Tāpiri -8 ki te 2\sqrt{6}.
x=\sqrt{6}-4
Whakawehe -8+2\sqrt{6} ki te 2.
x=\frac{-2\sqrt{6}-8}{2}
Nā, me whakaoti te whārite x=\frac{-8±2\sqrt{6}}{2} ina he tango te ±. Tango 2\sqrt{6} mai i -8.
x=-\sqrt{6}-4
Whakawehe -8-2\sqrt{6} ki te 2.
x=\sqrt{6}-4 x=-\sqrt{6}-4
Kua oti te whārite te whakatau.
x^{2}+8x=-10
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+8x+4^{2}=-10+4^{2}
Whakawehea te 8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 4. Nā, tāpiria te pūrua o te 4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+8x+16=-10+16
Pūrua 4.
x^{2}+8x+16=6
Tāpiri -10 ki te 16.
\left(x+4\right)^{2}=6
Tauwehea x^{2}+8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{6}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+4=\sqrt{6} x+4=-\sqrt{6}
Whakarūnātia.
x=\sqrt{6}-4 x=-\sqrt{6}-4
Me tango 4 mai i ngā taha e rua o te whārite.