Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=8 ab=7
Hei whakaoti i te whārite, whakatauwehea te x^{2}+8x+7 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x+1\right)\left(x+7\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=-1 x=-7
Hei kimi otinga whārite, me whakaoti te x+1=0 me te x+7=0.
a+b=8 ab=1\times 7=7
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+7. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x^{2}+x\right)+\left(7x+7\right)
Tuhia anō te x^{2}+8x+7 hei \left(x^{2}+x\right)+\left(7x+7\right).
x\left(x+1\right)+7\left(x+1\right)
Tauwehea te x i te tuatahi me te 7 i te rōpū tuarua.
\left(x+1\right)\left(x+7\right)
Whakatauwehea atu te kīanga pātahi x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-1 x=-7
Hei kimi otinga whārite, me whakaoti te x+1=0 me te x+7=0.
x^{2}+8x+7=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-8±\sqrt{8^{2}-4\times 7}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 8 mō b, me 7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 7}}{2}
Pūrua 8.
x=\frac{-8±\sqrt{64-28}}{2}
Whakareatia -4 ki te 7.
x=\frac{-8±\sqrt{36}}{2}
Tāpiri 64 ki te -28.
x=\frac{-8±6}{2}
Tuhia te pūtakerua o te 36.
x=-\frac{2}{2}
Nā, me whakaoti te whārite x=\frac{-8±6}{2} ina he tāpiri te ±. Tāpiri -8 ki te 6.
x=-1
Whakawehe -2 ki te 2.
x=-\frac{14}{2}
Nā, me whakaoti te whārite x=\frac{-8±6}{2} ina he tango te ±. Tango 6 mai i -8.
x=-7
Whakawehe -14 ki te 2.
x=-1 x=-7
Kua oti te whārite te whakatau.
x^{2}+8x+7=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+8x+7-7=-7
Me tango 7 mai i ngā taha e rua o te whārite.
x^{2}+8x=-7
Mā te tango i te 7 i a ia ake anō ka toe ko te 0.
x^{2}+8x+4^{2}=-7+4^{2}
Whakawehea te 8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 4. Nā, tāpiria te pūrua o te 4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+8x+16=-7+16
Pūrua 4.
x^{2}+8x+16=9
Tāpiri -7 ki te 16.
\left(x+4\right)^{2}=9
Tauwehea x^{2}+8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+4=3 x+4=-3
Whakarūnātia.
x=-1 x=-7
Me tango 4 mai i ngā taha e rua o te whārite.