Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+76-400=0
Tangohia te 400 mai i ngā taha e rua.
x^{2}-324=0
Tangohia te 400 i te 76, ka -324.
\left(x-18\right)\left(x+18\right)=0
Whakaarohia te x^{2}-324. Tuhia anō te x^{2}-324 hei x^{2}-18^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=18 x=-18
Hei kimi otinga whārite, me whakaoti te x-18=0 me te x+18=0.
x^{2}=400-76
Tangohia te 76 mai i ngā taha e rua.
x^{2}=324
Tangohia te 76 i te 400, ka 324.
x=18 x=-18
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}+76-400=0
Tangohia te 400 mai i ngā taha e rua.
x^{2}-324=0
Tangohia te 400 i te 76, ka -324.
x=\frac{0±\sqrt{0^{2}-4\left(-324\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -324 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-324\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{1296}}{2}
Whakareatia -4 ki te -324.
x=\frac{0±36}{2}
Tuhia te pūtakerua o te 1296.
x=18
Nā, me whakaoti te whārite x=\frac{0±36}{2} ina he tāpiri te ±. Whakawehe 36 ki te 2.
x=-18
Nā, me whakaoti te whārite x=\frac{0±36}{2} ina he tango te ±. Whakawehe -36 ki te 2.
x=18 x=-18
Kua oti te whārite te whakatau.