Whakaoti mō x
x=18
x=-18
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+76-400=0
Tangohia te 400 mai i ngā taha e rua.
x^{2}-324=0
Tangohia te 400 i te 76, ka -324.
\left(x-18\right)\left(x+18\right)=0
Whakaarohia te x^{2}-324. Tuhia anō te x^{2}-324 hei x^{2}-18^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=18 x=-18
Hei kimi otinga whārite, me whakaoti te x-18=0 me te x+18=0.
x^{2}=400-76
Tangohia te 76 mai i ngā taha e rua.
x^{2}=324
Tangohia te 76 i te 400, ka 324.
x=18 x=-18
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}+76-400=0
Tangohia te 400 mai i ngā taha e rua.
x^{2}-324=0
Tangohia te 400 i te 76, ka -324.
x=\frac{0±\sqrt{0^{2}-4\left(-324\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -324 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-324\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{1296}}{2}
Whakareatia -4 ki te -324.
x=\frac{0±36}{2}
Tuhia te pūtakerua o te 1296.
x=18
Nā, me whakaoti te whārite x=\frac{0±36}{2} ina he tāpiri te ±. Whakawehe 36 ki te 2.
x=-18
Nā, me whakaoti te whārite x=\frac{0±36}{2} ina he tango te ±. Whakawehe -36 ki te 2.
x=18 x=-18
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}