Whakaoti mō x
x=-15
x=8
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+7x-78-42=0
Tangohia te 42 mai i ngā taha e rua.
x^{2}+7x-120=0
Tangohia te 42 i te -78, ka -120.
a+b=7 ab=-120
Hei whakaoti i te whārite, whakatauwehea te x^{2}+7x-120 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,120 -2,60 -3,40 -4,30 -5,24 -6,20 -8,15 -10,12
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -120.
-1+120=119 -2+60=58 -3+40=37 -4+30=26 -5+24=19 -6+20=14 -8+15=7 -10+12=2
Tātaihia te tapeke mō ia takirua.
a=-8 b=15
Ko te otinga te takirua ka hoatu i te tapeke 7.
\left(x-8\right)\left(x+15\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=8 x=-15
Hei kimi otinga whārite, me whakaoti te x-8=0 me te x+15=0.
x^{2}+7x-78-42=0
Tangohia te 42 mai i ngā taha e rua.
x^{2}+7x-120=0
Tangohia te 42 i te -78, ka -120.
a+b=7 ab=1\left(-120\right)=-120
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-120. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,120 -2,60 -3,40 -4,30 -5,24 -6,20 -8,15 -10,12
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -120.
-1+120=119 -2+60=58 -3+40=37 -4+30=26 -5+24=19 -6+20=14 -8+15=7 -10+12=2
Tātaihia te tapeke mō ia takirua.
a=-8 b=15
Ko te otinga te takirua ka hoatu i te tapeke 7.
\left(x^{2}-8x\right)+\left(15x-120\right)
Tuhia anō te x^{2}+7x-120 hei \left(x^{2}-8x\right)+\left(15x-120\right).
x\left(x-8\right)+15\left(x-8\right)
Tauwehea te x i te tuatahi me te 15 i te rōpū tuarua.
\left(x-8\right)\left(x+15\right)
Whakatauwehea atu te kīanga pātahi x-8 mā te whakamahi i te āhuatanga tātai tohatoha.
x=8 x=-15
Hei kimi otinga whārite, me whakaoti te x-8=0 me te x+15=0.
x^{2}+7x-78=42
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x^{2}+7x-78-42=42-42
Me tango 42 mai i ngā taha e rua o te whārite.
x^{2}+7x-78-42=0
Mā te tango i te 42 i a ia ake anō ka toe ko te 0.
x^{2}+7x-120=0
Tango 42 mai i -78.
x=\frac{-7±\sqrt{7^{2}-4\left(-120\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 7 mō b, me -120 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-120\right)}}{2}
Pūrua 7.
x=\frac{-7±\sqrt{49+480}}{2}
Whakareatia -4 ki te -120.
x=\frac{-7±\sqrt{529}}{2}
Tāpiri 49 ki te 480.
x=\frac{-7±23}{2}
Tuhia te pūtakerua o te 529.
x=\frac{16}{2}
Nā, me whakaoti te whārite x=\frac{-7±23}{2} ina he tāpiri te ±. Tāpiri -7 ki te 23.
x=8
Whakawehe 16 ki te 2.
x=-\frac{30}{2}
Nā, me whakaoti te whārite x=\frac{-7±23}{2} ina he tango te ±. Tango 23 mai i -7.
x=-15
Whakawehe -30 ki te 2.
x=8 x=-15
Kua oti te whārite te whakatau.
x^{2}+7x-78=42
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+7x-78-\left(-78\right)=42-\left(-78\right)
Me tāpiri 78 ki ngā taha e rua o te whārite.
x^{2}+7x=42-\left(-78\right)
Mā te tango i te -78 i a ia ake anō ka toe ko te 0.
x^{2}+7x=120
Tango -78 mai i 42.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=120+\left(\frac{7}{2}\right)^{2}
Whakawehea te 7, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{7}{2}. Nā, tāpiria te pūrua o te \frac{7}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+7x+\frac{49}{4}=120+\frac{49}{4}
Pūruatia \frac{7}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+7x+\frac{49}{4}=\frac{529}{4}
Tāpiri 120 ki te \frac{49}{4}.
\left(x+\frac{7}{2}\right)^{2}=\frac{529}{4}
Tauwehea x^{2}+7x+\frac{49}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{529}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{7}{2}=\frac{23}{2} x+\frac{7}{2}=-\frac{23}{2}
Whakarūnātia.
x=8 x=-15
Me tango \frac{7}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}