Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+7x-4x=20
Tangohia te 4x mai i ngā taha e rua.
x^{2}+3x=20
Pahekotia te 7x me -4x, ka 3x.
x^{2}+3x-20=0
Tangohia te 20 mai i ngā taha e rua.
x=\frac{-3±\sqrt{3^{2}-4\left(-20\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 3 mō b, me -20 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-20\right)}}{2}
Pūrua 3.
x=\frac{-3±\sqrt{9+80}}{2}
Whakareatia -4 ki te -20.
x=\frac{-3±\sqrt{89}}{2}
Tāpiri 9 ki te 80.
x=\frac{\sqrt{89}-3}{2}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{89}}{2} ina he tāpiri te ±. Tāpiri -3 ki te \sqrt{89}.
x=\frac{-\sqrt{89}-3}{2}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{89}}{2} ina he tango te ±. Tango \sqrt{89} mai i -3.
x=\frac{\sqrt{89}-3}{2} x=\frac{-\sqrt{89}-3}{2}
Kua oti te whārite te whakatau.
x^{2}+7x-4x=20
Tangohia te 4x mai i ngā taha e rua.
x^{2}+3x=20
Pahekotia te 7x me -4x, ka 3x.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=20+\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+3x+\frac{9}{4}=20+\frac{9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+3x+\frac{9}{4}=\frac{89}{4}
Tāpiri 20 ki te \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{89}{4}
Tauwehea x^{2}+3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{89}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{2}=\frac{\sqrt{89}}{2} x+\frac{3}{2}=-\frac{\sqrt{89}}{2}
Whakarūnātia.
x=\frac{\sqrt{89}-3}{2} x=\frac{-\sqrt{89}-3}{2}
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.