Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=7 ab=12
Hei whakaoti i te whārite, whakatauwehea te x^{2}+7x+12 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,12 2,6 3,4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 12.
1+12=13 2+6=8 3+4=7
Tātaihia te tapeke mō ia takirua.
a=3 b=4
Ko te otinga te takirua ka hoatu i te tapeke 7.
\left(x+3\right)\left(x+4\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=-3 x=-4
Hei kimi otinga whārite, me whakaoti te x+3=0 me te x+4=0.
a+b=7 ab=1\times 12=12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,12 2,6 3,4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 12.
1+12=13 2+6=8 3+4=7
Tātaihia te tapeke mō ia takirua.
a=3 b=4
Ko te otinga te takirua ka hoatu i te tapeke 7.
\left(x^{2}+3x\right)+\left(4x+12\right)
Tuhia anō te x^{2}+7x+12 hei \left(x^{2}+3x\right)+\left(4x+12\right).
x\left(x+3\right)+4\left(x+3\right)
Tauwehea te x i te tuatahi me te 4 i te rōpū tuarua.
\left(x+3\right)\left(x+4\right)
Whakatauwehea atu te kīanga pātahi x+3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-3 x=-4
Hei kimi otinga whārite, me whakaoti te x+3=0 me te x+4=0.
x^{2}+7x+12=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-7±\sqrt{7^{2}-4\times 12}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 7 mō b, me 12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 12}}{2}
Pūrua 7.
x=\frac{-7±\sqrt{49-48}}{2}
Whakareatia -4 ki te 12.
x=\frac{-7±\sqrt{1}}{2}
Tāpiri 49 ki te -48.
x=\frac{-7±1}{2}
Tuhia te pūtakerua o te 1.
x=-\frac{6}{2}
Nā, me whakaoti te whārite x=\frac{-7±1}{2} ina he tāpiri te ±. Tāpiri -7 ki te 1.
x=-3
Whakawehe -6 ki te 2.
x=-\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{-7±1}{2} ina he tango te ±. Tango 1 mai i -7.
x=-4
Whakawehe -8 ki te 2.
x=-3 x=-4
Kua oti te whārite te whakatau.
x^{2}+7x+12=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+7x+12-12=-12
Me tango 12 mai i ngā taha e rua o te whārite.
x^{2}+7x=-12
Mā te tango i te 12 i a ia ake anō ka toe ko te 0.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=-12+\left(\frac{7}{2}\right)^{2}
Whakawehea te 7, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{7}{2}. Nā, tāpiria te pūrua o te \frac{7}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+7x+\frac{49}{4}=-12+\frac{49}{4}
Pūruatia \frac{7}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+7x+\frac{49}{4}=\frac{1}{4}
Tāpiri -12 ki te \frac{49}{4}.
\left(x+\frac{7}{2}\right)^{2}=\frac{1}{4}
Tauwehea x^{2}+7x+\frac{49}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{7}{2}=\frac{1}{2} x+\frac{7}{2}=-\frac{1}{2}
Whakarūnātia.
x=-3 x=-4
Me tango \frac{7}{2} mai i ngā taha e rua o te whārite.