Tauwehe
\left(x+3\right)\left(x+4\right)
Aromātai
\left(x+3\right)\left(x+4\right)
Graph
Pātaitai
Polynomial
x ^ { 2 } + 7 x + 12
Tohaina
Kua tāruatia ki te papatopenga
a+b=7 ab=1\times 12=12
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx+12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,12 2,6 3,4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 12.
1+12=13 2+6=8 3+4=7
Tātaihia te tapeke mō ia takirua.
a=3 b=4
Ko te otinga te takirua ka hoatu i te tapeke 7.
\left(x^{2}+3x\right)+\left(4x+12\right)
Tuhia anō te x^{2}+7x+12 hei \left(x^{2}+3x\right)+\left(4x+12\right).
x\left(x+3\right)+4\left(x+3\right)
Tauwehea te x i te tuatahi me te 4 i te rōpū tuarua.
\left(x+3\right)\left(x+4\right)
Whakatauwehea atu te kīanga pātahi x+3 mā te whakamahi i te āhuatanga tātai tohatoha.
x^{2}+7x+12=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\times 12}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-7±\sqrt{49-4\times 12}}{2}
Pūrua 7.
x=\frac{-7±\sqrt{49-48}}{2}
Whakareatia -4 ki te 12.
x=\frac{-7±\sqrt{1}}{2}
Tāpiri 49 ki te -48.
x=\frac{-7±1}{2}
Tuhia te pūtakerua o te 1.
x=-\frac{6}{2}
Nā, me whakaoti te whārite x=\frac{-7±1}{2} ina he tāpiri te ±. Tāpiri -7 ki te 1.
x=-3
Whakawehe -6 ki te 2.
x=-\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{-7±1}{2} ina he tango te ±. Tango 1 mai i -7.
x=-4
Whakawehe -8 ki te 2.
x^{2}+7x+12=\left(x-\left(-3\right)\right)\left(x-\left(-4\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -3 mō te x_{1} me te -4 mō te x_{2}.
x^{2}+7x+12=\left(x+3\right)\left(x+4\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}