Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+6x-6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-6±\sqrt{6^{2}-4\left(-6\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 6 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-6\right)}}{2}
Pūrua 6.
x=\frac{-6±\sqrt{36+24}}{2}
Whakareatia -4 ki te -6.
x=\frac{-6±\sqrt{60}}{2}
Tāpiri 36 ki te 24.
x=\frac{-6±2\sqrt{15}}{2}
Tuhia te pūtakerua o te 60.
x=\frac{2\sqrt{15}-6}{2}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{15}}{2} ina he tāpiri te ±. Tāpiri -6 ki te 2\sqrt{15}.
x=\sqrt{15}-3
Whakawehe -6+2\sqrt{15} ki te 2.
x=\frac{-2\sqrt{15}-6}{2}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{15}}{2} ina he tango te ±. Tango 2\sqrt{15} mai i -6.
x=-\sqrt{15}-3
Whakawehe -6-2\sqrt{15} ki te 2.
x=\sqrt{15}-3 x=-\sqrt{15}-3
Kua oti te whārite te whakatau.
x^{2}+6x-6=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+6x-6-\left(-6\right)=-\left(-6\right)
Me tāpiri 6 ki ngā taha e rua o te whārite.
x^{2}+6x=-\left(-6\right)
Mā te tango i te -6 i a ia ake anō ka toe ko te 0.
x^{2}+6x=6
Tango -6 mai i 0.
x^{2}+6x+3^{2}=6+3^{2}
Whakawehea te 6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 3. Nā, tāpiria te pūrua o te 3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+6x+9=6+9
Pūrua 3.
x^{2}+6x+9=15
Tāpiri 6 ki te 9.
\left(x+3\right)^{2}=15
Tauwehea x^{2}+6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{15}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+3=\sqrt{15} x+3=-\sqrt{15}
Whakarūnātia.
x=\sqrt{15}-3 x=-\sqrt{15}-3
Me tango 3 mai i ngā taha e rua o te whārite.
x^{2}+6x-6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-6±\sqrt{6^{2}-4\left(-6\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 6 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-6\right)}}{2}
Pūrua 6.
x=\frac{-6±\sqrt{36+24}}{2}
Whakareatia -4 ki te -6.
x=\frac{-6±\sqrt{60}}{2}
Tāpiri 36 ki te 24.
x=\frac{-6±2\sqrt{15}}{2}
Tuhia te pūtakerua o te 60.
x=\frac{2\sqrt{15}-6}{2}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{15}}{2} ina he tāpiri te ±. Tāpiri -6 ki te 2\sqrt{15}.
x=\sqrt{15}-3
Whakawehe -6+2\sqrt{15} ki te 2.
x=\frac{-2\sqrt{15}-6}{2}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{15}}{2} ina he tango te ±. Tango 2\sqrt{15} mai i -6.
x=-\sqrt{15}-3
Whakawehe -6-2\sqrt{15} ki te 2.
x=\sqrt{15}-3 x=-\sqrt{15}-3
Kua oti te whārite te whakatau.
x^{2}+6x-6=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+6x-6-\left(-6\right)=-\left(-6\right)
Me tāpiri 6 ki ngā taha e rua o te whārite.
x^{2}+6x=-\left(-6\right)
Mā te tango i te -6 i a ia ake anō ka toe ko te 0.
x^{2}+6x=6
Tango -6 mai i 0.
x^{2}+6x+3^{2}=6+3^{2}
Whakawehea te 6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 3. Nā, tāpiria te pūrua o te 3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+6x+9=6+9
Pūrua 3.
x^{2}+6x+9=15
Tāpiri 6 ki te 9.
\left(x+3\right)^{2}=15
Tauwehea x^{2}+6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{15}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+3=\sqrt{15} x+3=-\sqrt{15}
Whakarūnātia.
x=\sqrt{15}-3 x=-\sqrt{15}-3
Me tango 3 mai i ngā taha e rua o te whārite.