Whakaoti mō x
x=-7
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+6x-52=3x-24
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-8.
x^{2}+6x-52-3x=-24
Tangohia te 3x mai i ngā taha e rua.
x^{2}+3x-52=-24
Pahekotia te 6x me -3x, ka 3x.
x^{2}+3x-52+24=0
Me tāpiri te 24 ki ngā taha e rua.
x^{2}+3x-28=0
Tāpirihia te -52 ki te 24, ka -28.
a+b=3 ab=-28
Hei whakaoti i te whārite, whakatauwehea te x^{2}+3x-28 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,28 -2,14 -4,7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -28.
-1+28=27 -2+14=12 -4+7=3
Tātaihia te tapeke mō ia takirua.
a=-4 b=7
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(x-4\right)\left(x+7\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=4 x=-7
Hei kimi otinga whārite, me whakaoti te x-4=0 me te x+7=0.
x^{2}+6x-52=3x-24
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-8.
x^{2}+6x-52-3x=-24
Tangohia te 3x mai i ngā taha e rua.
x^{2}+3x-52=-24
Pahekotia te 6x me -3x, ka 3x.
x^{2}+3x-52+24=0
Me tāpiri te 24 ki ngā taha e rua.
x^{2}+3x-28=0
Tāpirihia te -52 ki te 24, ka -28.
a+b=3 ab=1\left(-28\right)=-28
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-28. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,28 -2,14 -4,7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -28.
-1+28=27 -2+14=12 -4+7=3
Tātaihia te tapeke mō ia takirua.
a=-4 b=7
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(x^{2}-4x\right)+\left(7x-28\right)
Tuhia anō te x^{2}+3x-28 hei \left(x^{2}-4x\right)+\left(7x-28\right).
x\left(x-4\right)+7\left(x-4\right)
Tauwehea te x i te tuatahi me te 7 i te rōpū tuarua.
\left(x-4\right)\left(x+7\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=4 x=-7
Hei kimi otinga whārite, me whakaoti te x-4=0 me te x+7=0.
x^{2}+6x-52=3x-24
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-8.
x^{2}+6x-52-3x=-24
Tangohia te 3x mai i ngā taha e rua.
x^{2}+3x-52=-24
Pahekotia te 6x me -3x, ka 3x.
x^{2}+3x-52+24=0
Me tāpiri te 24 ki ngā taha e rua.
x^{2}+3x-28=0
Tāpirihia te -52 ki te 24, ka -28.
x=\frac{-3±\sqrt{3^{2}-4\left(-28\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 3 mō b, me -28 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-28\right)}}{2}
Pūrua 3.
x=\frac{-3±\sqrt{9+112}}{2}
Whakareatia -4 ki te -28.
x=\frac{-3±\sqrt{121}}{2}
Tāpiri 9 ki te 112.
x=\frac{-3±11}{2}
Tuhia te pūtakerua o te 121.
x=\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{-3±11}{2} ina he tāpiri te ±. Tāpiri -3 ki te 11.
x=4
Whakawehe 8 ki te 2.
x=-\frac{14}{2}
Nā, me whakaoti te whārite x=\frac{-3±11}{2} ina he tango te ±. Tango 11 mai i -3.
x=-7
Whakawehe -14 ki te 2.
x=4 x=-7
Kua oti te whārite te whakatau.
x^{2}+6x-52=3x-24
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-8.
x^{2}+6x-52-3x=-24
Tangohia te 3x mai i ngā taha e rua.
x^{2}+3x-52=-24
Pahekotia te 6x me -3x, ka 3x.
x^{2}+3x=-24+52
Me tāpiri te 52 ki ngā taha e rua.
x^{2}+3x=28
Tāpirihia te -24 ki te 52, ka 28.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=28+\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+3x+\frac{9}{4}=28+\frac{9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+3x+\frac{9}{4}=\frac{121}{4}
Tāpiri 28 ki te \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{121}{4}
Tauwehea x^{2}+3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{2}=\frac{11}{2} x+\frac{3}{2}=-\frac{11}{2}
Whakarūnātia.
x=4 x=-7
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}