Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=6 ab=-40
Hei whakaoti i te whārite, whakatauwehea te x^{2}+6x-40 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,40 -2,20 -4,10 -5,8
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -40.
-1+40=39 -2+20=18 -4+10=6 -5+8=3
Tātaihia te tapeke mō ia takirua.
a=-4 b=10
Ko te otinga te takirua ka hoatu i te tapeke 6.
\left(x-4\right)\left(x+10\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=4 x=-10
Hei kimi otinga whārite, me whakaoti te x-4=0 me te x+10=0.
a+b=6 ab=1\left(-40\right)=-40
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-40. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,40 -2,20 -4,10 -5,8
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -40.
-1+40=39 -2+20=18 -4+10=6 -5+8=3
Tātaihia te tapeke mō ia takirua.
a=-4 b=10
Ko te otinga te takirua ka hoatu i te tapeke 6.
\left(x^{2}-4x\right)+\left(10x-40\right)
Tuhia anō te x^{2}+6x-40 hei \left(x^{2}-4x\right)+\left(10x-40\right).
x\left(x-4\right)+10\left(x-4\right)
Tauwehea te x i te tuatahi me te 10 i te rōpū tuarua.
\left(x-4\right)\left(x+10\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=4 x=-10
Hei kimi otinga whārite, me whakaoti te x-4=0 me te x+10=0.
x^{2}+6x-40=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-6±\sqrt{6^{2}-4\left(-40\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 6 mō b, me -40 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-40\right)}}{2}
Pūrua 6.
x=\frac{-6±\sqrt{36+160}}{2}
Whakareatia -4 ki te -40.
x=\frac{-6±\sqrt{196}}{2}
Tāpiri 36 ki te 160.
x=\frac{-6±14}{2}
Tuhia te pūtakerua o te 196.
x=\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{-6±14}{2} ina he tāpiri te ±. Tāpiri -6 ki te 14.
x=4
Whakawehe 8 ki te 2.
x=-\frac{20}{2}
Nā, me whakaoti te whārite x=\frac{-6±14}{2} ina he tango te ±. Tango 14 mai i -6.
x=-10
Whakawehe -20 ki te 2.
x=4 x=-10
Kua oti te whārite te whakatau.
x^{2}+6x-40=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+6x-40-\left(-40\right)=-\left(-40\right)
Me tāpiri 40 ki ngā taha e rua o te whārite.
x^{2}+6x=-\left(-40\right)
Mā te tango i te -40 i a ia ake anō ka toe ko te 0.
x^{2}+6x=40
Tango -40 mai i 0.
x^{2}+6x+3^{2}=40+3^{2}
Whakawehea te 6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 3. Nā, tāpiria te pūrua o te 3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+6x+9=40+9
Pūrua 3.
x^{2}+6x+9=49
Tāpiri 40 ki te 9.
\left(x+3\right)^{2}=49
Tauwehea x^{2}+6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{49}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+3=7 x+3=-7
Whakarūnātia.
x=4 x=-10
Me tango 3 mai i ngā taha e rua o te whārite.