Whakaoti mō y
y=-\frac{x\left(x+6\right)}{6-x}
x\neq 6
Whakaoti mō x (complex solution)
x=\frac{\sqrt{y^{2}-36y+36}+y-6}{2}
x=\frac{-\sqrt{y^{2}-36y+36}+y-6}{2}
Whakaoti mō x
x=\frac{\sqrt{y^{2}-36y+36}+y-6}{2}
x=\frac{-\sqrt{y^{2}-36y+36}+y-6}{2}\text{, }y\geq 12\sqrt{2}+18\text{ or }y\leq 18-12\sqrt{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+6x=yx-6y
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te x-6.
yx-6y=x^{2}+6x
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(x-6\right)y=x^{2}+6x
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\frac{\left(x-6\right)y}{x-6}=\frac{x\left(x+6\right)}{x-6}
Whakawehea ngā taha e rua ki te x-6.
y=\frac{x\left(x+6\right)}{x-6}
Mā te whakawehe ki te x-6 ka wetekia te whakareanga ki te x-6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}