Whakaoti mō x
x=-15
x=9
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+6x+9-144=0
Tangohia te 144 mai i ngā taha e rua.
x^{2}+6x-135=0
Tangohia te 144 i te 9, ka -135.
a+b=6 ab=-135
Hei whakaoti i te whārite, whakatauwehea te x^{2}+6x-135 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,135 -3,45 -5,27 -9,15
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -135.
-1+135=134 -3+45=42 -5+27=22 -9+15=6
Tātaihia te tapeke mō ia takirua.
a=-9 b=15
Ko te otinga te takirua ka hoatu i te tapeke 6.
\left(x-9\right)\left(x+15\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=9 x=-15
Hei kimi otinga whārite, me whakaoti te x-9=0 me te x+15=0.
x^{2}+6x+9-144=0
Tangohia te 144 mai i ngā taha e rua.
x^{2}+6x-135=0
Tangohia te 144 i te 9, ka -135.
a+b=6 ab=1\left(-135\right)=-135
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-135. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,135 -3,45 -5,27 -9,15
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -135.
-1+135=134 -3+45=42 -5+27=22 -9+15=6
Tātaihia te tapeke mō ia takirua.
a=-9 b=15
Ko te otinga te takirua ka hoatu i te tapeke 6.
\left(x^{2}-9x\right)+\left(15x-135\right)
Tuhia anō te x^{2}+6x-135 hei \left(x^{2}-9x\right)+\left(15x-135\right).
x\left(x-9\right)+15\left(x-9\right)
Tauwehea te x i te tuatahi me te 15 i te rōpū tuarua.
\left(x-9\right)\left(x+15\right)
Whakatauwehea atu te kīanga pātahi x-9 mā te whakamahi i te āhuatanga tātai tohatoha.
x=9 x=-15
Hei kimi otinga whārite, me whakaoti te x-9=0 me te x+15=0.
x^{2}+6x+9=144
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x^{2}+6x+9-144=144-144
Me tango 144 mai i ngā taha e rua o te whārite.
x^{2}+6x+9-144=0
Mā te tango i te 144 i a ia ake anō ka toe ko te 0.
x^{2}+6x-135=0
Tango 144 mai i 9.
x=\frac{-6±\sqrt{6^{2}-4\left(-135\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 6 mō b, me -135 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-135\right)}}{2}
Pūrua 6.
x=\frac{-6±\sqrt{36+540}}{2}
Whakareatia -4 ki te -135.
x=\frac{-6±\sqrt{576}}{2}
Tāpiri 36 ki te 540.
x=\frac{-6±24}{2}
Tuhia te pūtakerua o te 576.
x=\frac{18}{2}
Nā, me whakaoti te whārite x=\frac{-6±24}{2} ina he tāpiri te ±. Tāpiri -6 ki te 24.
x=9
Whakawehe 18 ki te 2.
x=-\frac{30}{2}
Nā, me whakaoti te whārite x=\frac{-6±24}{2} ina he tango te ±. Tango 24 mai i -6.
x=-15
Whakawehe -30 ki te 2.
x=9 x=-15
Kua oti te whārite te whakatau.
\left(x+3\right)^{2}=144
Tauwehea x^{2}+6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{144}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+3=12 x+3=-12
Whakarūnātia.
x=9 x=-15
Me tango 3 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}